GAN Zoo:千奇百怪的生成对抗网络,都在这里了(73个)

允中 编译整理 量子位 出品 | 公众号 QbitAI

自从Goodfellow2014年提出这个想法之后,生成对抗网络(GAN)就成了深度学习领域内最火的一个概念,包括LeCun在内的许多学者都认为,GAN的出现将会大大推进AI向无监督学习发展的进程。

于是,研究GAN就成了学术圈里的一股风潮,几乎每周,都有关于GAN的全新论文发表。而学者们不仅热衷于研究GAN,还热衷于给自己研究的GAN起名,比如什么3D-GAN、BEGAN、iGAN、S²GAN……千奇百怪、应有尽有。

今天,量子位决定带大家逛逛GANs的动物园(园长:Avinash Hindupur),看看目前世界上到底存活着多少GAN。

GAN —  Generative Adversarial Networks

https://arxiv.org/abs/1406.2661

3D-GAN —  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

https://arxiv.org/abs/1610.07584

AdaGAN —  AdaGAN: Boosting Generative Models

http://arxiv.org/abs/1701.02386v1

AffGAN —  Amortised MAP Inference for Image Super-resolution

https://arxiv.org/abs/1610.04490

ALI —  Adversarially Learned Inference

https://arxiv.org/abs/1606.00704

AMGAN —  Generative Adversarial Nets with Labeled Data by Activation Maximization

http://arxiv.org/abs/1703.02000v1

AnoGAN —  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

http://arxiv.org/abs/1703.05921v1

ArtGAN —  ArtGAN: Artwork Synthesis with Conditional Categorial GANs

https://arxiv.org/abs/1702.03410

b-GAN —  b-GAN: Unified Framework of Generative Adversarial Networks

https://openreview.net/pdf?id=S1JG13oee

Bayesian GAN —  Deep and Hierarchical Implicit Models

https://arxiv.org/abs/1702.08896

BEGAN —  BEGAN: Boundary Equilibrium Generative Adversarial Networks

http://arxiv.org/abs/1703.10717v2

BiGAN —  Adversarial Feature Learning

http://arxiv.org/abs/1605.09782v7

BS-GAN —  Boundary-Seeking Generative Adversarial Networks

http://arxiv.org/abs/1702.08431v1

CGAN —  Towards Diverse and Natural Image Descriptions via a Conditional GAN

http://arxiv.org/abs/1703.06029v1

CCGAN —  Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

https://arxiv.org/abs/1611.06430v1

CatGAN —  Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

http://arxiv.org/abs/1511.06390v2

CoGAN —  Coupled Generative Adversarial Networks

http://arxiv.org/abs/1606.07536v2

Context-RNN-GAN —  Contextual RNN-GANs for Abstract Reasoning Diagram Generation

https://arxiv.org/abs/1609.09444

C-RNN-GAN —  C-RNN-GAN: Continuous recurrent neural networks with adversarial training

https://arxiv.org/abs/1611.09904

CVAE-GAN —  CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

https://arxiv.org/abs/1703.10155

CycleGAN —  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

https://arxiv.org/abs/1703.10593

DTN —  Unsupervised Cross-Domain Image Generation

https://arxiv.org/abs/1611.02200

DCGAN —  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

https://arxiv.org/abs/1511.06434

DiscoGAN —  Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

http://arxiv.org/abs/1703.05192v1

DualGAN —  DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

http://arxiv.org/abs/1704.02510v1

EBGAN —  Energy-based Generative Adversarial Network

http://arxiv.org/abs/1609.03126v4

f-GAN —  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

https://arxiv.org/abs/1606.00709

GoGAN —  Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

https://arxiv.org/abs/1704.04865

GP-GAN —  GP-GAN: Towards Realistic High-Resolution Image Blending

http://arxiv.org/abs/1703.07195v2

IAN —  Neural Photo Editing with Introspective Adversarial Networks

https://arxiv.org/abs/1609.07093

iGAN —  Generative Visual Manipulation on the Natural Image Manifold

https://arxiv.org/abs/1609.03552v2

IcGAN —  Invertible Conditional GANs for image editing

https://arxiv.org/abs/1611.06355

ID-CGAN- Image De-raining Using a Conditional Generative Adversarial Network

http://arxiv.org/abs/1701.05957v3

Improved GAN —  Improved Techniques for Training GANs

https://arxiv.org/abs/1606.03498

InfoGAN —  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

http://arxiv.org/abs/1606.03657v1

LR-GAN —  LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

http://arxiv.org/abs/1703.01560v1

LSGAN —  Least Squares Generative Adversarial Networks

http://arxiv.org/abs/1611.04076v3

LS-GAN —  Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities

http://arxiv.org/abs/1701.06264v5

MGAN —  Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

https://arxiv.org/abs/1604.04382

MAGAN —  MAGAN: Margin Adaptation for Generative Adversarial Networks

http://arxiv.org/abs/1704.03817v1

MalGAN —  Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN

http://arxiv.org/abs/1702.05983v1

MARTA-GAN —  Deep Unsupervised Representation Learning for Remote Sensing Images

https://arxiv.org/abs/1612.08879

McGAN —  McGan: Mean and Covariance Feature Matching GAN

http://arxiv.org/abs/1702.08398v1

MedGAN —  Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks

http://arxiv.org/abs/1703.06490v1

MIX+GAN —  Generalization and Equilibrium in Generative Adversarial Nets (GANs

https://arxiv.org/abs/1703.00573v3

MPM-GAN —  Message Passing Multi-Agent GANs

https://arxiv.org/abs/1612.01294

MV-BiGAN —  Multi-view Generative Adversarial Networks

http://arxiv.org/abs/1611.02019v1

pix2pix —  Image-to-Image Translation with Conditional Adversarial Networks

https://arxiv.org/abs/1611.07004

PPGN —  Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space

https://arxiv.org/abs/1612.00005

PrGAN —  3D Shape Induction from 2D Views of Multiple Objects

https://arxiv.org/abs/1612.05872

RenderGAN —  RenderGAN: Generating Realistic Labeled Data

https://github.com/hindupuravinash/the-gan-zoo/blob/master

RTT-GAN —  Recurrent Topic-Transition GAN for Visual Paragraph Generation

http://arxiv.org/abs/1703.07022v2

SGAN —  Stacked Generative Adversarial Networks

http://arxiv.org/abs/1612.04357v4

SGAN —  Texture Synthesis with Spatial Generative Adversarial Networks

https://arxiv.org/abs/1611.08207

SAD-GAN —  SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks

http://arxiv.org/abs/1611.08788v1

SalGAN —  SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

http://arxiv.org/abs/1701.01081v2

SEGAN —  SEGAN: Speech Enhancement Generative Adversarial Network

http://arxiv.org/abs/1703.09452v1

SeqGAN —  SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

http://arxiv.org/abs/1609.05473v5

SketchGAN —  Adversarial Training For Sketch Retrieval

https://arxiv.org/abs/1607.02748

SL-GAN — Semi-Latent GAN: Learning to generate and modify facial images from attributes

https://arxiv.org/abs/1704.02166

SRGAN — Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

http://arxiv.org/abs/1609.04802v3

S²GAN — Generative Image Modeling using Style and Structure Adversarial Networks

http://arxiv.org/abs/1603.05631v2

SSL-GAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

https://arxiv.org/abs/1611.06430v1

StackGAN — StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

http://arxiv.org/abs/1612.03242v1

TGAN — Temporal Generative Adversarial Nets

http://arxiv.org/abs/1611.06624v1

TAC-GAN — TAC-GAN — Text Conditioned Auxiliary Classifier Generative Adversarial Network

http://arxiv.org/abs/1703.06412v2

TP-GAN — Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

https://arxiv.org/abs/1704.04086

Triple-GAN — Triple Generative Adversarial Nets

http://arxiv.org/abs/1703.02291v2

VGAN — Generative Adversarial Networks as Variational Training of Energy Based Models

https://arxiv.org/abs/1611.01799

VAE-GAN — Autoencoding beyond pixels using a learned similarity metric

https://arxiv.org/abs/1512.09300

ViGAN — Image Generation and Editing with Variational Info Generative AdversarialNetworks

http://arxiv.org/abs/1701.04568v1

WGAN — Wasserstein GAN

http://arxiv.org/abs/1701.07875v2

WGAN-GP — Improved Training of Wasserstein GANs

https://arxiv.org/abs/1704.00028

WaterGAN — WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images

http://arxiv.org/abs/1702.07392v1

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-04-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【论文推荐】最新6篇主题模型相关论文—正则化变分推断主题模型、非参数先验、在线聊天、词义消歧、神经语言模型

【导读】专知内容组整理了最近六篇主题模型(Topic Modeling)相关文章,为大家进行介绍,欢迎查看! 1. Topic Modeling on Heal...

3055
来自专栏专知

【论文推荐】最新六篇生成式对抗网络(GAN)相关论文—半监督学习、对偶、交互生成对抗网络、激活、纳什均衡、tempoGAN

【导读】专知内容组整理了最近六篇生成式对抗网络(GAN)相关文章,为大家进行介绍,欢迎查看! 1. Exploiting the potential of un...

4829
来自专栏专知

【论文推荐】最新六篇强化学习相关论文—Sublinear、机器阅读理解、加速强化学习、对抗性奖励学习、人机交互

1462
来自专栏专知

【专知荟萃22】机器阅读理解RC知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

机器阅读理解(Reading Comprehension)专知荟萃 入门学习 进阶论文 综述 Datasets Code 领域专家 入门学习 深度学习解决机器阅...

1.1K5
来自专栏专知

计算机视觉经典论文荟萃,深度学习方法占领9大方向,建议收藏

【导读】近日,大连理工大学的学生ArcherFMY针对近几年深度学习在计算机视觉领域的应用提供了一个非常详细的阅读清单。如果你在深度学习领域是一个新手,你可以会...

6229
来自专栏CreateAMind

GAN论文解读推荐

ICLR 2017 的 submission DDL 刚刚过,网上就纷纷有了 ICLR 2017 导读的文章。本周我也将为大家带来 ICLR 2017 subm...

2163
来自专栏PPV课数据科学社区

为你分享73篇论文解决深度强化学习的18个关键问题

本文共2434字,建议阅读5分钟。 本文为大家分享了73篇论文,介绍深度学习的方法策略以及关键问题分析。

1892
来自专栏专知

【论文推荐】最新六篇网络节点表示相关论文—传播网络嵌入、十亿级网络节点表示、综述、属性感知、贝叶斯个性化排序、复杂网络分类

2852
来自专栏数据派THU

为你分享73篇论文解决深度强化学习的18个关键问题

来源:PaperWeekly 作者:王凌霄 本文共2434字,建议阅读5分钟。 本文为大家分享了73篇论文,介绍深度学习的方法策略以及关键问题分析。 这两天我阅...

3019
来自专栏专知

【论文推荐】最新八篇强化学习相关论文—残差网络、QMIX、元学习、动态速率分配、分层强化学习、抽象概况、快速物体检测、SOM

【导读】专知内容组整理了最近八篇强化学习(Reinforcement learning)相关文章,为大家进行介绍,欢迎查看! 1.BlockDrop: Dyna...

5325

扫码关注云+社区

领取腾讯云代金券