图像金字塔分层算法

一. 图像金字塔概述

1. 图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。

2. 图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。

3. 金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。如下图:

二. 图像金字塔种类:

高斯金字塔(Gaussianpyramid): 用来向下采样,主要的图像金字塔。

拉普拉斯金字塔(Laplacianpyramid): 用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。

这里的向下与向上采样,是对图像的尺寸而言的(和金字塔的方向相反),向上就是图像尺寸加倍,向下就是图像尺寸减半。而如果我们按上图中演示的金字塔方向来理解,金字塔向上图像其实在缩小,这样刚好是反过来了。

如下图所示:

三. 工作原理

高斯金字塔工作原理:

为了获取层级为i+1层的高斯金字塔图像,我们采用如下方法:

<1>对图像i进行高斯内核卷积

<2>将所有偶数行和列去除

得到的图像即为 i+1层的图像,显而易见,结果图像只有原图的四分之一。通过对输入图像i层(原始图像)不停迭代以上步骤就会得到整个金字塔。同时我们也可以看到,向下取样会逐渐丢失图像的信息。

以上就是对图像的向下取样操作,即缩小图像。

拉普拉斯金字塔工作原理:

如果想放大图像,则需要通过向上取样操作得到,具体做法如下:

<1>将图像在每个方向扩大为原来的两倍,新增的行和列以0填充

<2>使用先前同样的内核(乘以4)与放大后的图像卷积,获得 “新增像素”的近似值

得到的图像即为放大后的图像,但是与原来的图像相比会发觉比较模糊,因为在缩放的过程中已经丢失了一些信息,如果想在缩小和放大整个过程中减少信息的丢失,这些数据形成了拉普拉斯金字塔。

也就是说,拉普拉斯金字塔是通过源图像减去先缩小后再放大的图像的一系列图像构成的。

关于图像金字塔非常重要的一个应用就是实现图像分割。图像分割的话,先要建立一个图像金字塔,然后在i和i+1层的像素直接依照对应的关系,建立起”父与子“关系。而快速初始分割可以先在金字塔高层的低分辨率图像上完成,然后逐层对分割加以优化。在某种分辨率下无法发现的特性在另一种分辨率下将很容易被发现。

四. 试验结果

先对原图下采样按照步骤得到高斯金字塔,如下图高斯金字塔:

由每一级高斯金字塔像采样扩展后的图像,即下图为经过插值滤波器后的金字塔图像:

将高斯金字塔减去插值滤波后的金字塔,得到拉普拉斯金字塔图像如下图:

参考文献:http://wenku.baidu.com/browse/downloadrec?doc_id=6cbaacf5cc22bcd126ff0ccf&

原文发布于微信公众号 - 智能算法(AI_Algorithm)

原文发表时间:2016-09-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术随笔

[ILSVRC] 基于OverFeat的图像分类、定位、检测引言相关理论计算机视觉三大任务Alexnet图片分类回顾基础学习OverFeat图片分类定位任务检测总结Reference

84660
来自专栏CreateAMind

检测9000类物体的YOLO9000 更好 更快 更强

多尺度训练YOLOv2;权衡速度和准确率,运行在不同大小图像上。YOLOv2测试VOC 2007 数据集:67FPS时,76.8mAP;40FPS时,78.6m...

19640
来自专栏机器之心

资源 | 从全连接层到大型卷积核:深度学习语义分割全指南

选自qure.ai 机器之心编译 参与:路雪、蒋思源 语义分割一直是计算机视觉中十分重要的领域,随着深度学习的流行,语义分割任务也得到了大量的进步。本文首先阐...

47760
来自专栏机器学习算法工程师

EM算法原理总结

地址:http://www.cnblogs.com/pinard/p/6912636.html

11420
来自专栏机器学习算法与Python学习

Pre-training到底有没有用?何恺明等人新作:Rethinking ImageNet Pre-training

使用基于ImageNet预训练(Pre-training)的网络已成为计算机视觉任务中一种常规的操作。何恺明等人在新作Rethinking ImageNet P...

11220
来自专栏老秦求学

决策树(ID3,C4.5,CART)原理以及实现

决策树是一种基本的分类和回归方法.决策树顾名思义,模型可以表示为树型结构,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布.

17710
来自专栏技术碎碎念

基于深度学习的图像风格转换

距离上次写博客已经好久好久好久了,真是懈怠的生活节奏,整天混吃等死玩游戏,前些日子做毕业设计时总算又学了点新东西。学了一点深度学习和卷积神经网络的知识,附带着...

46870
来自专栏人工智能头条

北大、北理工、旷视联手:用于图像语义分割的金字塔注意力网络

22280
来自专栏SIGAI学习与实践平台

理解Spatial Transformer Networks

随着深度学习的不断发展,卷积神经网络(CNN)作为计算机视觉领域的杀手锏,在几乎所有视觉相关任务中都展现出了超越传统机器学习算法甚至超越人类的能力。一系列CNN...

16450
来自专栏机器之心

徒手实现CNN:综述论文详解卷积网络的数学本质

选自arXiv 机器之心编译 参与:黄小天、路雪、蒋思源 近日南洋理工大学研究者发布了一篇描述卷积网络数学原理的论文,该论文从数学的角度阐述整个卷积网络的运算与...

384110

扫码关注云+社区

领取腾讯云代金券