前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习-多元线性回归

机器学习-多元线性回归

作者头像
杨熹
发布2018-04-02 15:51:31
8220
发布2018-04-02 15:51:31
举报
文章被收录于专栏:杨熹的专栏杨熹的专栏

A. 用途:

可以用来预测,由多种因素影响的结果。

B. 建立公式:

C. 求解方法:

方法1. Gradient Descent:

技巧:
技巧1. Feature Scaling:
何时用:

当各个变量的值域或者数量级相差比较大时, 需要将各个变量的值域变换到相似的水平, 变换后,Gradient Descent 就可以更快地下降。

为什么要用:

不用的话,J 关于 Theta 的形状就会非常扁,Gradient 就会来回摆动,就需要更长的时间才能找到最小值。

所以就要做Feature Scaling:

怎么用:

1.除以值域范围:

2.或者,先减平均值,再除以值域范围:

之后,这个形状就会比较正规,Gradient 就可以比较快地找到全局最小值。

技巧2. Learning Rate:

如何确认Gradient Descent是在正确地进行? 如何选择Alpha?

1. 如何确认Gradient Descent是在正确地进行?

数学家们已经证明,当Alpha足够小,J就会每次迭代后都下降。

所以,就可以画图,横轴是迭代的次数,纵轴是cost function的值: 如果是正确的话,那么每次都用迭代后得到的Theta代入J,J应该是下降的。

如果曲线是上升的,说明Gradient Descent用错了,此时需要将Alpha调小。

因为Alpha较大的话,就会过头而错过最小值,进而表现越来越差,造成曲线是上升的:

但是当Alpha太小的话,收敛就会很慢。

补充: 到底需要多少次迭代才会收敛,是与算法和数据有关的。

自动检测是否收敛的方法: 但是这个阈值是很难去确定的。

2. 如何选择Alpha? 在实践中: 可以尝试一系列Alpha的值,0.001,0.01,0.1,1等。

技巧3. 如何选Feature?

在实践中: 你可以不只是用给定的因素,而是通过思考,看哪些因素也是影响预测目标的原因,或者由原始的因素间,进行加减乘除等运算,自己构建Feature。 有一种比较普遍的构建方法,就是多项式。

后续会介绍一些算法,是用来自动选择Feature的。

方法2. Normal Equation

它是另一种求解最小值的方法,是通过分析的方式,而不是迭代。

根据线性代数的知识,得到Theta的求解公式:

m个Sample数据,n个Feature,那么Design Matrix的维度就是 m*(n+1)。

当 X`X 不可逆的时候,该怎么办? 造成不可逆的原因可能主要有两个: 一个是变量间具有相关性,比如一个变量以线性相关关系的形式被用作两个变量。 另一个原因是用了太多的Feature,就是m<=n时,比如说只用10个Sample去做101个Feature的预测。

这两种情况下的解决方案就是,要么删掉一些Feature,要么采用Regularization,后续。

D. 两种方法比较

用 Normal Equation 的话,就不用做 Feature Scaling 了。

当 Feature 有很多,成千上百万的时候,Gradient Descent 也仍然有效,但是 Normal Equation 因为要计算矩阵的转置,乘积,还有逆,就不适用于这样的数量级的计算。一般在 1000 级别的还可以用 Normal Equation。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2016.05.16 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 方法1. Gradient Descent:
    • 技巧:
      • 技巧1. Feature Scaling:
      • 技巧2. Learning Rate:
      • 技巧3. 如何选Feature?
  • 方法2. Normal Equation
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档