前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用深度神经网络处理NER命名实体识别问题

用深度神经网络处理NER命名实体识别问题

作者头像
杨熹
发布2018-04-02 16:49:49
1.8K0
发布2018-04-02 16:49:49
举报
文章被收录于专栏:杨熹的专栏杨熹的专栏
本文结构:
  1. 什么是命名实体识别(NER)
  2. 怎么识别?

cs224d Day 7: 项目2-用DNN处理NER问题

课程项目描述地址


什么是NER?

命名实体识别(NER)是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。命名实体识别是信息提取、问答系统、句法分析、机器翻译等应用领域的重要基础工具,作为结构化信息提取的重要步骤。摘自BosonNLP

怎么识别?

先把解决问题的逻辑说一下,然后解释主要的代码,有兴趣的话,完整代码请去这里看

代码是在 Tensorflow 下建立只有一个隐藏层的 DNN 来处理 NER 问题。

1.问题识别:

NER 是个分类问题。

给一个单词,我们需要根据上下文判断,它属于下面四类的哪一个,如果都不属于,则类别为0,即不是实体,所以这是一个需要分成 5 类的问题:

代码语言:javascript
复制
• Person (PER)
• Organization (ORG)
• Location (LOC)
• Miscellaneous (MISC)

我们的训练数据有两列,第一列是单词,第二列是标签。

代码语言:javascript
复制
EU  ORG
rejects O
German  MISC
Peter   PER
BRUSSELS    LOC
2.模型:

接下来我们用深度神经网络对其进行训练。

模型如下:

输入层的 x^(t) 为以 x_t 为中心的窗口大小为3的上下文语境,x_t 是 one-hot 向量,x_t 与 L 作用后就是相应的词向量,词向量的长度为 d = 50 :

我们建立一个只有一个隐藏层的神经网络,隐藏层维度是 100,y^ 就是得到的预测值,维度是 5:

用交叉熵来计算误差:

J 对各个参数进行求导:

得到如下求导公式:

在 TensorFlow 中求导是自动实现的,这里用Adam优化算法更新梯度,不断地迭代,使得loss越来越小直至收敛。

3.具体实现

def test_NER() 中,我们进行 max_epochs 次迭代,每次,用 training data 训练模型 得到一对 train_loss, train_acc,再用这个模型去预测 validation data,得到一对 val_loss, predictions,我们选择最小的 val_loss,并把相应的参数 weights 保存起来,最后我们是要用这些参数去预测 test data 的类别标签:

代码语言:javascript
复制
def test_NER():

  config = Config()
  with tf.Graph().as_default():
    model = NERModel(config)   # 最主要的类

    init = tf.initialize_all_variables()
    saver = tf.train.Saver()

    with tf.Session() as session:
      best_val_loss = float('inf')  # 最好的值时,它的 loss 它的 迭代次数 epoch
      best_val_epoch = 0

      session.run(init)
      for epoch in xrange(config.max_epochs):
        print 'Epoch {}'.format(epoch)
        start = time.time()
        ###
        train_loss, train_acc = model.run_epoch(session, model.X_train,
                                                model.y_train)   # 1.把 train 数据放进迭代里跑,得到 loss 和 accuracy
        val_loss, predictions = model.predict(session, model.X_dev, model.y_dev)   # 2.用这个model去预测 dev 数据,得到loss 和 prediction
        print 'Training loss: {}'.format(train_loss)
        print 'Training acc: {}'.format(train_acc)
        print 'Validation loss: {}'.format(val_loss)
        if val_loss < best_val_loss:            # 用 val 数据的loss去找最小的loss
          best_val_loss = val_loss
          best_val_epoch = epoch
          if not os.path.exists("./weights"):
            os.makedirs("./weights")
        
          saver.save(session, './weights/ner.weights')   # 把最小的 loss 对应的 weights 保存起来
        if epoch - best_val_epoch > config.early_stopping:
          break
        ###
        confusion = calculate_confusion(config, predictions, model.y_dev)  # 3.把 dev 的lable数据放进去,计算prediction的confusion
        print_confusion(confusion, model.num_to_tag)
        print 'Total time: {}'.format(time.time() - start)
      
      saver.restore(session, './weights/ner.weights')   # 再次加载保存过的 weights,用 test 数据做预测,得到预测结果
      print 'Test'
      print '=-=-='
      print 'Writing predictions to q2_test.predicted'
      _, predictions = model.predict(session, model.X_test, model.y_test)
      save_predictions(predictions, "q2_test.predicted")    # 把预测结果保存起来

if __name__ == "__main__":
  test_NER()
4.模型是怎么训练的呢?
  • 首先导入数据 training,validation,test:
代码语言:javascript
复制
# Load the training set
docs = du.load_dataset('data/ner/train')

# Load the dev set (for tuning hyperparameters)
docs = du.load_dataset('data/ner/dev')

# Load the test set (dummy labels only)
docs = du.load_dataset('data/ner/test.masked')
  • 把单词转化成 one-hot 向量后,再转化成词向量:
代码语言:javascript
复制
  def add_embedding(self):
    # The embedding lookup is currently only implemented for the CPU
    with tf.device('/cpu:0'):

      embedding = tf.get_variable('Embedding', [len(self.wv), self.config.embed_size])  # assignment 中的 L   
      window = tf.nn.embedding_lookup(embedding, self.input_placeholder)                # 在 L 中直接把window大小的context的word vector搞定
      window = tf.reshape(
        window, [-1, self.config.window_size * self.config.embed_size])

      return window
  • 建立神经层,包括用 xavier 去初始化第一层, L2 正则化和用 dropout 来减小过拟合的处理:
代码语言:javascript
复制
  def add_model(self, window):
  
    with tf.variable_scope('Layer1', initializer=xavier_weight_init()) as scope:        # 用initializer=xavier去初始化第一层
      W = tf.get_variable(                                                              # 第一层有 W,b1,h
          'W', [self.config.window_size * self.config.embed_size,
                self.config.hidden_size])
      b1 = tf.get_variable('b1', [self.config.hidden_size])
      h = tf.nn.tanh(tf.matmul(window, W) + b1)
      if self.config.l2:                                                                # L2 regularization for W
          tf.add_to_collection('total_loss', 0.5 * self.config.l2 * tf.nn.l2_loss(W))   # 0.5 * self.config.l2 * tf.nn.l2_loss(W)

    with tf.variable_scope('Layer2', initializer=xavier_weight_init()) as scope:
      U = tf.get_variable('U', [self.config.hidden_size, self.config.label_size])
      b2 = tf.get_variable('b2', [self.config.label_size])
      y = tf.matmul(h, U) + b2
      if self.config.l2:
          tf.add_to_collection('total_loss', 0.5 * self.config.l2 * tf.nn.l2_loss(U))
    output = tf.nn.dropout(y, self.dropout_placeholder)                                 # 返回 output,两个variable_scope都带dropout

    return output 

关于 L2正则化 和 dropout 是什么, 如何减小过拟合问题的,可以看这篇博客,总结的简单明了。

  • 用 cross entropy 来计算 loss:
代码语言:javascript
复制
  def add_loss_op(self, y):

    cross_entropy = tf.reduce_mean(                                                     # 1.关键步骤:loss是用cross entropy定义的
        tf.nn.softmax_cross_entropy_with_logits(y, self.labels_placeholder))                # y是模型预测值,计算cross entropy
    tf.add_to_collection('total_loss', cross_entropy)           # Stores value in the collection with the given name.
                                                                # collections are not sets, it is possible to add a value to a collection several times.
    loss = tf.add_n(tf.get_collection('total_loss'))            # Adds all input tensors element-wise. inputs: A list of Tensor with same shape and type

    return loss 
  • 接着用 Adam Optimizer 把loss最小化:
代码语言:javascript
复制
  def add_training_op(self, loss):

    optimizer = tf.train.AdamOptimizer(self.config.lr)
    global_step = tf.Variable(0, name='global_step', trainable=False)
    train_op = optimizer.minimize(loss, global_step=global_step)    # 2.关键步骤:用 AdamOptimizer 使 loss 达到最小,所以更关键的是 loss

    return train_op

每一次训练后,得到了最小化 loss 相应的 weights。


这样,NER 这个分类问题就搞定了,当然为了提高精度等其他问题,还是需要查阅文献来学习的。下一次先实现个 RNN。

cs224d

Day 1. 深度学习与自然语言处理 主要概念一览

Day 2. TensorFlow 入门

Day 3. word2vec 模型思想和代码实现

Day 4. 怎样做情感分析

Day 5. CS224d-Day 5: RNN快速入门

Day 6. 一文学会用 Tensorflow 搭建神经网络

Day 7. 用深度神经网络处理NER命名实体识别问题

Day 8. 用 RNN 训练语言模型生成文本

Day 9. RNN与机器翻译

Day 10. 用 Recursive Neural Networks 得到分析树

Day 11. RNN的高级应用

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2016.09.05 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 本文结构:
  • 什么是NER?
  • 怎么识别?
    • 1.问题识别:
      • 2.模型:
        • 3.具体实现
          • 4.模型是怎么训练的呢?
          相关产品与服务
          机器翻译
          机器翻译(Tencent Machine Translation,TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档