机器学习的技术栈及应用实例脑洞

之前写了一篇入门级的学习列表: 简单粗暴地入门机器学习

好多小伙伴觉得不太过瘾,今天补充一些脑洞!

本文结构:

  • 机器学习技术栈
  • 职位
  • 项目实例

1. 机器学习技术栈

去知乎上可以搜到很多推荐的学习路线,问题就是太多了,我就先列出一些必需的知识和项目方向,学习还是要一步一步积累的。

需要的基础技能:

  • Various level of math, including probability, statistics, algebra, calculus, logic and algorithms.
  • Bayesian networking or graphical modeling, including neural nets.
  • Physics, engineering and robotics.
  • Computer science, programming languages and coding.
  • Cognitive science theory.

关于数学基础:

  • 线性代数,最小二乘,PCA,SVD
  • 微积分基础,梯度下降法,牛顿法,神经网络后向传播
  • 概率论基础,条件概率,贝叶斯定理,logistic

很多小伙伴觉得自己数学不好,是不是就会很难入门,上一篇文章中提到过,入门并不难,本科时的高数就可以用,如果有时间,可以复习一下 线性代数,微积分,概率论,这些是基础。就算学习深度学习时遇到了复杂的模型公式,有了这些基础,应该也是可以看懂的。

库:

  • TensorFlow + Keras
  • Python: Numpy, Pandas, Matplotlib, Scipy

机器学习算法基础:

分类 回归 聚类 关联 决策树 支持向量机(SVM) 神经网络 深度学习 增强学习 交叉检验 贝叶斯

模型训练基础:

  • Back Propagation (BP)
  • Stochastic Gradient Descent (SGD)

神经网络:

  • Feedforward Neural Network
  • Convolutional Neural Network (CNN)
  • Recurrent Neural Network (RNN)
  • Deep Feedforward Network (DFN)

自然语言处理:推荐课程 cs224d

  • word embedding
  • Softmax

有趣的项目:

人脸识别 手写识别 物体识别 语言识别

个性化推荐 预测价格 用户画像 行为分析

无人车 照片油画化 文章生成 音乐生成 诗歌生成 聊天机器人 游戏机器人


2. 职位

职位的话,推荐去拉勾网搜机器学习,深度学习,人工智能等关键词,看一下都有哪些职位,就差不多能知道需要哪些技能,挑一个和自己技术栈比较相近的开始学习。

不过如果还没有明确的方向的话,基础学起来,例如 斯坦福 Andrew Ng 的 机器学习课程,还是没有差的,因为底层知识都是必需的,而且基础就是举一反三,以不变应万变的神器。

这里先列出一些大的类型:

  • AI / machine learning researcher.

Research improvements to machine learning algorithms. In some cases, research ways of applying it to new domains. Usually you've got a PhD in the area for these jobs.

  • AI Software development, including program management and test.

Developing the systems and infrastructure that can apply machine learning to an input data set. This is just like any other software engineering position. You can get these jobs with a bachelor's in a related field (e.g. computer science), though it's good to have some understanding of machine learning and AI, and good math skills.

  • Data mining and analysis.

This is deep investigation of large data sources, and often creating and training systems to recognize patterns in them. A PhD in a related field is not unusual, but again I've seen people with bachelor's degrees doing it.

  • Machine learning applications.

This is applying a machine learning or AI framework to a specific problem in a different domain. For example, applying machine learning to gesture recognition, ad analysis, or fraud detection. If you are already working in the target area, you can do this with a little guidance from someone familiar with the framework you want to use.

如果还是不知道自己的目标的话,那就先进入一线城市、最热门、最具有竞争力的行业企业里去修炼,同时持续地观察自己。越大的城市可能性越多,视野越广阔,越容易发现自己喜欢的方向;越强的竞争也给你越多磨炼和积淀,在你找到目标的时候,有能力随时移动过去。最后,让优秀的人带你跑一段,慢慢你会看到机会。

忍不住来句最喜欢的鸡汤:


3. 项目实例

图片来自: 麦肯锡用数据说明,关于机器学习有120个商业机会

麦肯锡研究发布了机器学习将影响的12个领域,每个领域又分为10个方面。也就是说可以看到深度学习的120个商业机会。

现在身边比较火的提的最多的词就是计算机视觉,自然语言处理,人工智能,VRAR,自动驾驶等等,但其实机器学习可以解决的问题远不止这些。

系统地学完一门机器学习的课程后,就可以知道,它能做的可以总结为 优化,预测,相关性 问题,所以深度学习和机器学习可以用于解决很多行业的问题,制造业,金融业,零售业,能源,医疗,农业,媒体,电信等等,只要是涉及到优化,预测,个性化相关的,这俩技术都可以做。

下面 12 幅图就是各个领域的应用实例,有列出各自所属的问题类别,并按照影响度由高到低排列。

原文是一份136页的报告,感兴趣的可以点击此链接:http://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-age-of-analytics-competing-in-a-data-driven-world

零售业.jpg

金融业.jpg

媒体.jpg

汽车.jpg

电信.jpg

物流.jpg

制造业.jpg

农业.jpg

能源.jpg

卫生保健.jpg

中西制药.jpg

公共社会.jpg


好啦,暂时就列举这么多,还是那句话,对于初学者,这篇文章你就用来有个宏观把握就可以了,脚踏实地地先把第一篇文章中的材料学好,就没什么不可能的。不要被这篇文章中的 list 吓到。

我也在一点点学习,共勉,特别喜欢的一句话:

一个人的知识就像一个圆,圆周外面是未知世界;圆的半径越大,圆周就越长,因而就更感到无知里的圆的半径越大。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

干货 | 这里有一篇深度强化学习劝退文

AI 科技评论按:本文作者 Frankenstein,首发于作者的知乎主页,AI科技评论获取授权转载。 今天在学校又双叒叕提到了 Deep Reinforcem...

7486
来自专栏AI科技评论

Yann LeCun连发三弹:人人都懂的深度学习基本原理(附视频)

一名 AI 专家值多少钱? “基于我个人经验,一名计算机领域的 AI 专家对于企业的价值,至少为 500-1000 万美元。为了争夺这些少数的人才,正在开展竞标...

3469
来自专栏机器之心

学界 | 学术盛宴:微软亚洲研究院CVPR 2017论文分享会全情回顾

机器之心原创 作者:Smith 今年 7 月,世界顶级计算机视觉会议 CVPR(计算机视觉与模式识别会议)将在美国夏威夷举行。在此之前,「微软亚洲研究院创研论坛...

5056
来自专栏专知

《科学》副主编:影响因子不应被用于评价科学家

“影响因子不应被用于评价科学家。”10月29日,《科学》杂志副主编瓦尔达·文森(Valda Vinson)在2018年世界生命科学大会期间接受媒体专访时表示,基...

1112
来自专栏新智元

谷歌与全球顶级医学院联手,Jeff Dean等扛鼎首篇电子病历论文,康奈尔大学王飞解读

作者:王飞,康奈尔大学威尔医学院助理教授 编辑:闻菲 【新智元导读】本周谷歌在ArXiv上公开了一篇众人期待已久的论文,也很可能是谷歌在电子病历建模分析方面的首...

41510
来自专栏腾讯技术工程官方号的专栏

Fashion-MNIST 一周年 | Google NIPS最爱,还登上了Science

? 导语:本文回顾了Fashion-MNIST发布后的一年里在人工智能/机器学习学术圈和社区中所取得的进展。该数据集的初衷是替代MNIST,为机器学习提供一个...

1872
来自专栏腾讯大数据的专栏

机器学习 刀光剑影 之屠龙刀

机器学习是一个大武林,这里面江湖人士颇多,“发明”出来的算法兵器也是五花八门,浩瀚如海,足够你数上三天两夜了。然而,这些兵器行走江湖能用的不多,真正无敌的更是屈...

2108
来自专栏ATYUN订阅号

【科技】豹变猫?实时场景转变?NVIDIA多模式图像转换技术都能实现

改变美洲豹身上的斑点似乎是个很有趣的想法,而这个想法也并非天方夜谭。通过NVIDIA新的加速GPU深度学习技术,无论是图片还是视频,甚至是实体美洲豹,都能使其变...

952
来自专栏大数据挖掘DT机器学习

如何利用数据做排行榜?

8月15日上海交通大学世界一流大学研究中心发布2015年“世界大学学术排名”。今年,哈佛大学蝉联榜首,剑桥大学排名第2,第3-5名依次是牛津大学、...

4207
来自专栏专知

基于TensorFlow的机器学习速成课程25讲视频全集(23-25讲)

2184

扫码关注云+社区

领取腾讯云代金券