TensorFlow-5: 用 tf.contrib.learn 来构建输入函数

学习资料: https://www.tensorflow.org/get_started/input_fn

对应的中文翻译: http://studyai.site/2017/03/06/%E3%80%90Tensorflow%20r1.0%20%E6%96%87%E6%A1%A3%E7%BF%BB%E8%AF%91%E3%80%91%E9%80%9A%E8%BF%87tf.contrib.learn%E6%9D%A5%E6%9E%84%E5%BB%BA%E8%BE%93%E5%85%A5%E5%87%BD%E6%95%B0/


今天学习用 tf.contrib.learn 来建立 input funciton, 并用 DNN 对 Boston Housing 数据集进行回归预测。

问题:

  • 我们需要预测的是MEDV这个标签,以每一千美元为单位

一共有 5 步:

  • 导入 CSV 格式的数据集
  • 建立神经网络回归模型
  • 用训练数据集训练模型
  • 评价模型的准确率
  • 对新样本数据进行分类

代码: 地址: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston.py

"""DNNRegressor with custom input_fn for Housing dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools

import pandas as pd
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)

COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
           "dis", "tax", "ptratio", "medv"]
FEATURES = ["crim", "zn", "indus", "nox", "rm",
            "age", "dis", "tax", "ptratio"]
LABEL = "medv"


def input_fn(data_set):
  feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
  labels = tf.constant(data_set[LABEL].values)
  return feature_cols, labels


def main(unused_argv):
  # Load datasets
  training_set = pd.read_csv("boston_train.csv", skipinitialspace=True,
                             skiprows=1, names=COLUMNS)
  test_set = pd.read_csv("boston_test.csv", skipinitialspace=True,
                         skiprows=1, names=COLUMNS)

  # Set of 6 examples for which to predict median house values
  prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True,
                               skiprows=1, names=COLUMNS)

  # Feature cols
  feature_cols = [tf.contrib.layers.real_valued_column(k)
                  for k in FEATURES]

  # Build 2 layer fully connected DNN with 10, 10 units respectively.
  regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
                                            hidden_units=[10, 10],
                                            model_dir="/tmp/boston_model")

  # Fit
  regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)

  # Score accuracy
  ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
  loss_score = ev["loss"]
  print("Loss: {0:f}".format(loss_score))

  # Print out predictions
  y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
  # .predict() returns an iterator; convert to a list and print predictions
  predictions = list(itertools.islice(y, 6))
  print("Predictions: {}".format(str(predictions)))

if __name__ == "__main__":
  tf.app.run()

今天主要的知识点就是输入函数

在上面的代码中我们可以看到,输入数据时用的是 pandas,可以直接读取 CSV 文件 为了识别数据集中哪些是列,哪些是特征,哪些是预测标签,需要把这三者定义出来

在定义神经网络回归模型时,我们建立一个具有两层隐藏层的神经网络,每一层具有 10 个神经元节点, 接下来就是建立输入函数,它的作用就是把输入数据传递给回归模型,它可以接受 pandas 的 Dataframe 结构,并将特征和标签列作为 Tensors 返回

在训练时,只需要把训练数据集传递给输入函数,用 fit 迭代5000步 评价模型时,也是将测试数据集传递给输入函数,再用 evaluate 预测时,同样将预测数据集传递给输入函数


关于 输入函数:

昨天学到读取 CSV 文件的方法适用于不需要对原来的数据有什么操作的时候 但是当需要对数据进行特征工程时,我们就需要有一个输入函数来把数据的预处理给封装起来,再传递给模型

输入函数的基本框架:

def my_input_fn():

    # Preprocess your data here...

    # ...then return 1) a mapping of feature columns to Tensors with
    # the corresponding feature data, and 2) a Tensor containing labels
    return feature_cols, labels

输入函数必须返回下面两种值:

feature_cols:是一个字典,key 就是特征列的名字,value 就是 tensor,包含了相应的数据

labels:返回包含标签数据的 tensor,即所想要预测的目标

如果特征/标签数据存在pandas数据帧中或numpy数组中,那么需要将其转换为Tensor,然后从 input_fn 中返回。

对于稀疏数据 大多数值为0的数据,应该填充一个 SparseTensor,

下面例子,就是定义了一个具有3行和5列的二维 SparseTensor。在 [0,1] 上的元素的值为 6,[2,4] 上的元素值为 0.5,其他值为 0:

sparse_tensor = tf.SparseTensor(indices=[[0,1], [2,4]],
                                values=[6, 0.5],
                                dense_shape=[3, 5])
[[0, 6, 0, 0, 0]
 [0, 0, 0, 0, 0]
 [0, 0, 0, 0, 0.5]]

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【信息图】神经网络动物园前序:Cell与层之间如何连接

【新智元导读】 此前介绍的神经网络动物园让大家大饱眼福,看到了各种各样的神经网络模型。今天带来更为基础的介绍:组成神经网络模型的基本单元和层是怎么样的?通过信...

3346
来自专栏吉浦迅科技

深度学习GeForce GTX 1080/Titan X(Maxwell)/ Titan X (Pascal)比较

【新智元导读】深度学习计算该买哪款GPU,选择哪个平台?这篇文章为你提供对比指南。 购买用于运行深度学习算法的硬件时,我们常常找不到任何有用的基准,唯一的选择是...

2K5
来自专栏深度学习自然语言处理

详解文本分类之DeepCNN的理论与实践

最近在梳理文本分类的各个神经网络算法,特地一个来总结下。下面目录中多通道卷积已经讲过了,下面是链接,没看的可以瞅瞅。我会一个一个的讲解各个算法的理论与实践。目录...

1123
来自专栏Coding迪斯尼

用python实现数字图片识别神经网络--实现网络训练功能

1763
来自专栏杂七杂八

神经网络训练细节part1(下)

学习率的选择通过先用少部分数据来进行测试,选择一个较好的学习速率。选择的方式可以为在某个范围内随机取值,观察样本的准确率

1042
来自专栏新智元

【干货】深度学习三大硬件+四大学习库基准测试对比,指标全面呈现

【新智元导读】深度学习计算该买哪款GPU,选择哪个平台?这篇文章为你提供对比指南。 购买用于运行深度学习算法的硬件时,我们常常找不到任何有用的基准,唯一的选择是...

44215
来自专栏Small Code

【TensorFlow】TensorFlow 的多层感知器(MLP)

前面有几篇博文讲了使用 TensorFlow 实现线性回归和逻辑斯蒂回归,这次来说下多层感知器(Multi-Layer Perceptron)的 TensorF...

43411
来自专栏AI研习社

浏览器中的姿态检测:PoseNet 模型(附代码)

这里附上 Youtube 上这段视频的源代码,作者是 Siraj Raval:https://youtu.be/9KqNk5keyCc

3383
来自专栏一名叫大蕉的程序员

尝试克服一下小伙伴对神经网络的恐惧No.26

我是小蕉。 研表究明,这的网官的demo,代码确实的是己打自的。 这两天仔细研究了一下神经网络,简单的结构其实没想象中那么恐怖,只是我们自己吓自己,今天希望能把...

2026
来自专栏ATYUN订阅号

正则化贪心森林(RGF)的入门简介,含案例研究

作为曾参与机器学习竞赛的数据科学家,我一直在寻找“非主流”的算法。使用这些算法可能不会成为竞争的赢家。但是他们有独特的预测方式。这些算法可以在集成模型中使用,以...

5076

扫码关注云+社区

领取腾讯云代金券