ElasticSearch 集群监控

最近在做 ElasticSearch 的信息(集群和节点)监控,特此稍微整理下学到的东西。这篇文章主要介绍集群的监控。

要监控哪些 ElasticSearch metrics

Elasticsearch 提供了大量的 Metric,可以帮助您检测到问题的迹象,在遇到节点不可用、out-of-memory、long garbage collection times 的时候采取相应措施。但是指标太多了,有时我们并不需要这么多,这就需要我们进行筛选。

集群健康

一个 Elasticsearch 集群至少包括一个节点和一个索引。或者它 可能有一百个数据节点、三个单独的主节点,以及一小打客户端节点——这些共同操作一千个索引(以及上万个分片)。

不管集群扩展到多大规模,你都会想要一个快速获取集群状态的途径。 ClusterHealth API 充当的就是这个角色。你可以把它想象成是在一万英尺的高度鸟瞰集群。它可以告诉你安心吧一切都好,或者警告你集群某个地方有问题。

让我们执行一下 cluster-health API 然后看看响应体是什么样子的:

GET _cluster/health

和 Elasticsearch 里其他 API 一样, cluster-health 会返回一个 JSON 响应。这对自动化和告警系统来说,非常便于解析。响应中包含了和你集群有关的一些关键信息:

{
   "cluster_name": "elasticsearch_zach",
   "status": "green",
   "timed_out": false,
   "number_of_nodes": 1,
   "number_of_data_nodes": 1,
   "active_primary_shards": 10,
   "active_shards": 10,
   "relocating_shards": 0,
   "initializing_shards": 0,
   "unassigned_shards": 0
}

响应信息中最重要的一块就是 status 字段。状态可能是三个值。

集群统计信息包含 集群的分片数,文档数,存储空间,缓存信息,内存作用率,插件内容,文件系统内容,JVM 作用状况,系统 CPU,OS 信息,段信息。

查看全部统计信息命令:

curl -XGET 'http://localhost:9200/_cluster/stats?human&pretty'

返回 JSON 结果:

{
   "timestamp": 1459427693515,
   "cluster_name": "elasticsearch",
   "status": "green",
   "indices": {
      "count": 2,
      "shards": {
         "total": 10,
         "primaries": 10,
         "replication": 0,
         "index": {
            "shards": {
               "min": 5,
               "max": 5,
               "avg": 5
            },
            "primaries": {
               "min": 5,
               "max": 5,
               "avg": 5
            },
            "replication": {
               "min": 0,
               "max": 0,
               "avg": 0
            }
         }
      },
      "docs": {
         "count": 10,
         "deleted": 0
      },
      "store": {
         "size": "16.2kb",
         "size_in_bytes": 16684,
         "throttle_time": "0s",
         "throttle_time_in_millis": 0
      },
      "fielddata": {
         "memory_size": "0b",
         "memory_size_in_bytes": 0,
         "evictions": 0
      },
      "query_cache": {
         "memory_size": "0b",
         "memory_size_in_bytes": 0,
         "total_count": 0,
         "hit_count": 0,
         "miss_count": 0,
         "cache_size": 0,
         "cache_count": 0,
         "evictions": 0
      },
      "completion": {
         "size": "0b",
         "size_in_bytes": 0
      },
      "segments": {
         "count": 4,
         "memory": "8.6kb",
         "memory_in_bytes": 8898,
         "terms_memory": "6.3kb",
         "terms_memory_in_bytes": 6522,
         "stored_fields_memory": "1.2kb",
         "stored_fields_memory_in_bytes": 1248,
         "term_vectors_memory": "0b",
         "term_vectors_memory_in_bytes": 0,
         "norms_memory": "384b",
         "norms_memory_in_bytes": 384,
         "doc_values_memory": "744b",
         "doc_values_memory_in_bytes": 744,
         "index_writer_memory": "0b",
         "index_writer_memory_in_bytes": 0,
         "version_map_memory": "0b",
         "version_map_memory_in_bytes": 0,
         "fixed_bit_set": "0b",
         "fixed_bit_set_memory_in_bytes": 0,
         "file_sizes": {}
      },
      "percolator": {
         "num_queries": 0
      }
   },
   "nodes": {
      "count": {
         "total": 1,
         "data": 1,
         "coordinating_only": 0,
         "master": 1,
         "ingest": 1
      },
      "versions": [
         "5.6.3"
      ],
      "os": {
         "available_processors": 8,
         "allocated_processors": 8,
         "names": [
            {
               "name": "Mac OS X",
               "count": 1
            }
         ],
         "mem" : {
            "total" : "16gb",
            "total_in_bytes" : 17179869184,
            "free" : "78.1mb",
            "free_in_bytes" : 81960960,
            "used" : "15.9gb",
            "used_in_bytes" : 17097908224,
            "free_percent" : 0,
            "used_percent" : 100
         }
      },
      "process": {
         "cpu": {
            "percent": 9
         },
         "open_file_descriptors": {
            "min": 268,
            "max": 268,
            "avg": 268
         }
      },
      "jvm": {
         "max_uptime": "13.7s",
         "max_uptime_in_millis": 13737,
         "versions": [
            {
               "version": "1.8.0_74",
               "vm_name": "Java HotSpot(TM) 64-Bit Server VM",
               "vm_version": "25.74-b02",
               "vm_vendor": "Oracle Corporation",
               "count": 1
            }
         ],
         "mem": {
            "heap_used": "57.5mb",
            "heap_used_in_bytes": 60312664,
            "heap_max": "989.8mb",
            "heap_max_in_bytes": 1037959168
         },
         "threads": 90
      },
      "fs": {
         "total": "200.6gb",
         "total_in_bytes": 215429193728,
         "free": "32.6gb",
         "free_in_bytes": 35064553472,
         "available": "32.4gb",
         "available_in_bytes": 34802409472
      },
      "plugins": [
        {
          "name": "analysis-icu",
          "version": "5.6.3",
          "description": "The ICU Analysis plugin integrates Lucene ICU module into elasticsearch, adding ICU relates analysis components.",
          "classname": "org.elasticsearch.plugin.analysis.icu.AnalysisICUPlugin",
          "has_native_controller": false
        },
        {
          "name": "ingest-geoip",
          "version": "5.6.3",
          "description": "Ingest processor that uses looksup geo data based on ip adresses using the Maxmind geo database",
          "classname": "org.elasticsearch.ingest.geoip.IngestGeoIpPlugin",
          "has_native_controller": false
        },
        {
          "name": "ingest-user-agent",
          "version": "5.6.3",
          "description": "Ingest processor that extracts information from a user agent",
          "classname": "org.elasticsearch.ingest.useragent.IngestUserAgentPlugin",
          "has_native_controller": false
        }
      ]
   }
}

内存使用和 GC 指标

在运行 Elasticsearch 时,内存是您要密切监控的关键资源之一。 Elasticsearch 和 Lucene 以两种方式利用节点上的所有可用 RAM:JVM heap 和文件系统缓存。 Elasticsearch 运行在Java虚拟机(JVM)中,这意味着JVM垃圾回收的持续时间和频率将成为其他重要的监控领域。

上面返回的 JSON监控的指标有我个人觉得有这些:

  • nodes.successful
  • nodes.failed
  • nodes.total
  • nodes.mem.used_percent
  • nodes.process.cpu.percent
  • nodes.jvm.mem.heap_used

可以看到 JSON 文件是很复杂的,如果从这复杂的 JSON 中获取到对应的指标(key)的值呢,这里请看文章 :JsonPath —— JSON 解析神器

最后

这里主要讲下 ES 集群的一些监控信息,有些监控指标是个人觉得需要监控的,但是具体情况还是得看需求了。下篇文章主要讲节点的监控信息。转载请注明地址:http://www.54tianzhisheng.cn/2017/10/15/ElasticSearch-cluster-health-metrics/

参考资料

1、How to monitor Elasticsearch performance

2、ElasticSearch 性能监控

3、cluster-health

4、cluster-stats

相关阅读

1、Elasticsearch 默认分词器和中分分词器之间的比较及使用方法

2、全文搜索引擎 Elasticsearch 集群搭建入门教程

原文发布于微信公众号 - zhisheng(zhisheng_blog)

原文发表时间:2018-01-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏派森公园

如何监控Elasticsearch

Elasticsearch是一个开源的分布式文档存储和搜索引擎,可以近乎实时地存储和检索数据结构,它很大程度上依赖于Apache Lucence--一个用Jav...

34430
来自专栏云加头条

小程序测试方案初探

对于小程序如何做测试,依然是一头雾水,直到做了不少的项目,积累的一些经验和开源库之后才理清如何做测试,下面将会介绍如何对小程序做 UI 测试和单元测试。

2.3K30
来自专栏小狼的世界

HP-UX培训学习笔记

HP-UX操作系统全称为Hewlett Packard UniX,是惠普服务器上所有的操作系统。其发源自 AT & T SRV4系统,可以支持HP的PA-RIS...

18220
来自专栏数据和云

最佳实践:巧妙kill CRS进程而不导致主机重启

张大朋(Lunar)Oracle 资深技术专家 Lunar 拥有超过十年的 ORACLE SUPPORT 从业经验,曾经服务于ORACLE ACS部门,现就职于...

405100
来自专栏FreeBuf

CVE 2017-0199漏洞利用的新姿势

近日从客户处捕获一枚邮件附件中的可疑word样本,以下是扫描结果,检测率貌似不高。 ? ? 手动分析吧。 文件md5:0b16b255918264667a9f0...

25650
来自专栏GopherCoder

Python:一周笔记

18440
来自专栏北京马哥教育

Python框架:Django写图书管理系统(LMS)

今天我会带大家真正写一个Django项目,对于入门来说是有点难度的,因为逻辑比较复杂,但是真正的知识就是函数与面向对象,这也是培养用Django思维写项目的开始

28900
来自专栏FreeBuf

利用Pentestbox打造MS17-010移动杀器

1、前言 前段时间Shadow Broker披露了 Windows大量漏洞,甚至爆出黑客组织 Equation Group 对于Windows 远程漏洞 MS1...

38970
来自专栏雨过天晴

转 树莓派无显示器安装系统

19520
来自专栏刺客博客

搬迁新服发个教程: ssv3一键脚本

15930

扫码关注云+社区

领取腾讯云代金券