前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习(18)之支持向量机原理(三)线性不可分支持向量机与核函数

机器学习(18)之支持向量机原理(三)线性不可分支持向量机与核函数

作者头像
昱良
发布2018-04-04 15:32:56
9230
发布2018-04-04 15:32:56
举报

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第二

【Python】:排名第三

【算法】:排名第四

前言

在(机器学习(15)之支持向量机原理(一)线性支持向量机)和(机器学习(16)之支持向量机原理(二)软间隔最大化)中我们讲到了线性可分SVM的硬间隔最大化和软间隔最大化的算法,它们对线性可分的数据有很好的处理,但是对完全线性不可分的数据没有办法。本文我们就来探讨SVM如何处理线性不可分的数据,重点讲述核函数在SVM中处理线性不可分数据的作用。

多项式回归

在线性回归原理中,我们讲到了如何将多项式回归转化为线性回归。比如一个只有两个特征的p次方多项式回归的模型:

得到了下式:

可以发现,又重新回到了线性回归,这是一个五元线性回归,可以用线性回归的方法来完成算法。也就是说,对于二维的不是线性的数据,我们将其映射到了五维以后,就变成了线性的数据。这给了我们启发,也就是说对于在低维线性不可分的数据,在映射到了高维以后,就变成线性可分的了。这个思想我们同样可以运用到SVM的线性不可分数据上。也就是说,对于SVM线性不可分的低维特征数据,我们可以将其映射到高维,就能线性可分,此时就可以运用前两篇的线性可分SVM的算法思想了。

引入核函数

线性不可分的低维特征数据,可以将其映射到高维,就能线性可分。现在我们将它运用到我们的SVM的算法上。线性可分SVM的优化目标函数:

上式低维特征仅仅以内积xi∙xj的形式出现,如果我们定义一个低维特征空间到高维特征空间的映射ϕ(比如上一节2维到5维的映射),将所有特征映射到一个更高的维度,让数据线性可分,我们就可以继续按前两篇的方法来优化目标函数,求出分离超平面和分类决策函数了。也就是说现在的SVM的优化目标函数变成:

看起来似乎这样就已经完美解决了线性不可分SVM的问题了,但是事实是不是这样呢?我们看看,假如是一个2维特征的数据,我们可以将其映射到5维来做特征的内积,如果原始空间是三维,可以映射到到19维空间,似乎还可以处理。但是如果我们的低维特征是100个维度,1000个维度呢?那么我们要将其映射到超级高的维度来计算特征的内积。这时候映射成的高维维度是爆炸性增长的,这个计算量实在是太大了,而且如果遇到无穷维的情况,就根本无从计算了。

核函数的隆重出场

假设ϕ是一个从低维的输入空间χ(欧式空间的子集或者离散集合)到高维的希尔伯特空间的H映射。那么如果存在函数K(x,z),对于任意x,z∈χ,都有:

那么就称K(x,z)为核函数。

仔细观察上式可以发现,K(x,z)的计算是在低维特征空间来计算的,它避免了在刚才我们提到了在高维维度空间计算内积的恐怖计算量。也就是说,核函数的价值在于它虽然也是将特征进行从低维到高维的转换,但核函数好在它在低维上进行计算,而将实质上的分类效果(利用了内积)表现在了高维上,这样避免了直接在高维空间中的复杂计算,真正解决了SVM线性不可分的问题。

核函数详解

对于从低维到高维的映射,核函数不止一个。那么什么样的函数才可以当做核函数呢?由于一般我们说的核函数都是正定核函数,这里我们直说明正定核函数的充分必要条件。一个函数要想成为正定核函数,必须满足他里面任何点的集合形成的Gram矩阵是半正定的。也就是说,对于任意的,xi∈χ,i=1,2,3...m, K(xi,xj)对应的Gram矩阵K=[K(xi,xj)] 是半正定矩阵,则K(x,z)是正定核函数。从上面的定理看,它要求任意的集合都满足Gram矩阵半正定,所以自己去找一个核函数还是很难的,怎么办呢?下面我们来看看常见的核函数, 选择这几个核函数介绍是因为scikit-learn中默认可选的就是下面几个核函数。

线性核函数

线性核函数(Linear Kernel)其实就是我们前两篇的线性可分SVM,表达式为:

也就是说,线性可分SVM我们可以和线性不可分SVM归为一类,区别仅仅在于线性可分SVM用的是线性核函数。

多项式核函数

多项式核函数(Polynomial Kernel)是线性不可分SVM常用的核函数之一,表达式为:

其中,γ,r,d都需要自己调参定义。

高斯核函数

高斯核函数(Gaussian Kernel),在SVM中也称为径向基核函数(Radial Basis Function,RBF),它是非线性分类SVM最主流的核函数。libsvm默认的核函数就是它。表达式为:

其中,γ大于0,需要自己调参定义。

Sigmoid核函数

Sigmoid核函数(Sigmoid Kernel)也是线性不可分SVM常用的核函数之一,表达式为:

其中,γ,r都需要自己调参定义。

SVM小结

引入了核函数后,我们的SVM算法才算是比较完整了。现在我们对分类SVM的算法过程做一个总结。不再区别是否线性可分。

输入是m个样本(x1,y1),(x2,y2),...,(xm,ym),,其中x为n维特征向量。y为二元输出,值为1,或者-1.

输出是分离超平面的参数和w∗和b∗和分类决策函数。

算法过程

1)选择适当的核函数K(x,z)和一个惩罚系数C>0, 构造约束优化问题

2)用SMO算法求出上式最小时对应的α向量的值α∗向量.

3) 得到

4) 找出所有的S个支持向量,即满足0<αs<C对应的样本(xs,ys),计算出每个支持向量(xs,ys)对应的偏置b,最终的偏置项为所有值的平均

最终的分类超平面为

最终的分类决策函数为

至此,我们的分类SVM算是总结完毕。

欢迎分享给他人让更多的人受益

参考:

  1. 博客园(作者:刘建平) http://www.cnblogs.com/pinard/p/6103615.html
  2. 周志华《机器学习》
  3. 李航《统计学习方法》
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-09-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习算法与Python学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档