机器学习(30)之线性判别分析(LDA)原理详解

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第一

【Python】:排名第三

【算法】:排名第四

前言

在主成分分析(PCA)原理总结(机器学习(27)【降维】之主成分分析(PCA)详解)中对降维算法PCA做了总结。这里就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题模型。本文只讨论线性判别分析,因此后面所有的LDA均指线性判别分析。

LDA思想

LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的,这点和PCA不同。PCA是不考虑样本类别输出的无监督降维技术。LDA的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”,如下图所示。 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。

可能还是有点抽象,先看看最简单的情况。

假设有两类数据,分别为红色和蓝色,如下图所示,这些数据特征是二维的,希望将这些数据投影到一维的一条直线,让每一种类别数据的投影点尽可能的接近,而红色和蓝色数据中心之间的距离尽可能的大。

上图中提供了两种投影方式,哪一种能更好的满足我们的标准呢?从直观上可以看出,右图要比左图的投影效果好,因为右图的黑色数据和蓝色数据各个较为集中,且类别之间的距离明显。左图则在边界处数据混杂。以上就是LDA的主要思想了,当然在实际应用中,数据是多个类别的,我们的原始数据一般也是超过二维的,投影后的也一般不是直线,而是一个低维的超平面。

LDA原理与流程

LDA与PCA

LDA用于降维,和PCA有很多相同,也有很多不同的地方,因此值得好好的比较一下两者的降维异同点。

相同点

1)两者均可以对数据进行降维。

2)两者在降维时均使用了矩阵特征分解的思想。

3)两者都假设数据符合高斯分布。

不同点

1)LDA是有监督的降维方法,而PCA是无监督的降维方法

2)LDA降维最多降到类别数k-1的维数,而PCA没有这个限制。

3)LDA除了可以用于降维,还可以用于分类。

4)LDA选择分类性能最好的投影方向,而PCA选择样本点投影具有最大方差的方向。这点可以从下图形象的看出,在某些数据分布下LDA比PCA降维较优。

当然,某些某些数据分布下PCA比LDA降维较优,如下图所示:

LDA小结

LDA算法既可以用来降维,又可以用来分类,但是目前来说,主要还是用于降维。在进行图像识别相关的数据分析时,LDA是一个有力的工具。下面总结下LDA算法的优缺点。

优点

1)在降维过程中可以使用类别的先验知识经验,而像PCA这样的无监督学习则无法使用类别先验知识。

2)LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优。

缺点

1)LDA不适合对非高斯分布样本进行降维,PCA也有这个问题。

2)LDA降维最多降到类别数k-1的维数,如果我们降维的维度大于k-1,则不能使用LDA。当然目前有一些LDA的进化版算法可以绕过这个问题。

3)LDA在样本分类信息依赖方差而不是均值的时候,降维效果不好。

4)LDA可能过度拟合数据。

欢迎分享给他人让更多的人受益

参考:

  1. 周志华《机器学习》
  2. Neural Networks and Deep Learning by By Michael Nielsen
  3. 博客园 http://www.cnblogs.com/pinard/p/6244265.html
  4. 李航《统计学习方法》
  5. Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

原文发布于微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文发表时间:2017-12-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

一文了解采样方法

作者 | DarkScope,蚂蚁金服高级算法工程师,致力于算法技术的创新和实际应用,乐于通过博客的方式对技术进行分享和探讨。

8482
来自专栏机器人网

初学指南:贝叶斯统计

什么是Bayesian Statistics? Bayesian statistics is a particular approach to applying...

3456
来自专栏算法channel

算法channel使用指南(V2.0)

01 引言 欢迎关注 算法channel ! 交流思想,分享知识,找到迈入机器学习大门的系统学习方法,并在这条道路上不断攀登,这是小编创办本公众号的初衷。 本...

3508
来自专栏数据科学与人工智能

【算法】SVD算法

小编邀请您,先思考: 1 如何对矩阵做SVD? 2 SVD算法与PCA算法有什么关联? 3 SVD算法有什么应用? 4 SVD算法如何优化? 前言 奇异值分解(...

44511
来自专栏数据派THU

独家 | 一文读懂特征工程

本文结构 1. 概述 机器学习被广泛定义为“利用经验来改善计算机系统的自身性能”。事实上,“经验”在计算机中主要是以数据的形式存在的,因此数据是机器学习的前提...

2988
来自专栏SIGAI学习与实践平台

理解主成分分析 (PCA)

主成分分析法 (PCA) 是一种常用的数据分析手段。对于一组不同维度 之间可能存在线性相关关系的数据,PCA 能够把这组数据通过正交变换变 成各个维度之间线性无...

1051
来自专栏CreateAMind

最好的Dropout讲解

Dropout (Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法, 计算方便但功能强大。第一种近似下,Drop...

1971
来自专栏机器学习算法原理与实践

奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解...

983
来自专栏机器学习算法工程师

奇异值分解(SVD)原理与在降维中的应用

地址:https://www.cnblogs.com/pinard/p/6251584.html

2804
来自专栏算法channel

数据降维:特征值分解和奇异值分解的实战分析

《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来...

4334

扫码关注云+社区

领取腾讯云代金券