首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习(32)之典型相关性分析(CCA)详解 【文末有福利......】

机器学习(32)之典型相关性分析(CCA)详解 【文末有福利......】

作者头像
昱良
发布2018-04-04 15:52:55
5.6K0
发布2018-04-04 15:52:55
举报

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第一

【Python】:排名第三

【算法】:排名第四

人工智能与Python公开课

限时免费

文末领取

前言

典型关联分析(Canonical Correlation Analysis,简称CCA)是最常用的挖掘数据关联关系的算法之一。比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能力和跳远能力的数据。那么我们能不能说这两组数据是相关的呢?CCA可以帮助我们分析这个问题。

CCA概述

在数理统计里面,都知道相关系数这个概念。假设有两组一维的数据集X和Y,则相关系数ρ的定义为:

其中cov(X,Y)是X和Y的协方差,而D(X),D(Y)分别是X和Y的方差。相关系数ρ的取值为[-1,1], ρ的绝对值越接近于1,则X和Y的线性相关性越高。越接近于0,则X和Y的线性相关性越低。

虽然相关系数可以很好的帮我们分析一维数据的相关性,但是对于高维数据就不能直接使用了。如上所述,如果X是包括人身高和体重两个维度的数据,而Y是包括跑步能力和跳远能力两个维度的数据,就不能直接使用相关系数的方法。那我们能不能变通一下呢?CCA给了我们变通的方法。

CCA使用的方法是将多维的X和Y都用线性变换为1维的X'和Y',然后再使用相关系数来看X'和Y'的相关性。将数据从多维变到1位,也可以理解为CCA是在进行降维,将高维数据降到1维,然后再用相关系数进行相关性的分析。

CCA算法思想

上面提到CCA是将高维的两组数据分别降维到1维,然后用相关系数分析相关性。但是有一个问题是,降维的标准是如何选择的呢?回想下主成分分析PCA,降维的原则是投影方差最大;再回想下线性判别分析LDA,降维的原则是同类的投影方差小,异类间的投影方差大。对于我们的CCA,它选择的投影标准是降维到1维后,两组数据的相关系数最大。

假设数据集是X和Y,X为n1×m的样本矩阵,Y为n2×m的样本矩阵.其中m为样本个数,而n1,n2分别为X和Y的特征维度。对于X矩阵,将其投影到1维,对应的投影向量为a, 对于Y矩阵,将其投影到1维,对应的投影向量为b, 这样X ,Y投影后得到的一维向量分别为X',Y'。我们有

CCA的优化目标是最大化ρ(X′,Y′),得到对应的投影向量a,b,即

在投影前,一般会把原始数据进行标准化,得到均值为0而方差为1的数据X和Y。这样我们有:

由于X,Y的均值均为0,则

令SXY=cov(X,Y),则优化目标可以转化为:

由于分子分母增大相同的倍数,优化目标结果不变,我们可以采用和SVM类似的优化方法,固定分母,优化分子,具体的转化为

进而CCA算法的目标最终转化为一个凸优化过程,只要求出了这个优化目标的最大值,就是前面提到的多维X和Y的相关性度量,而对应的a,b则为降维时的投影向量。

这个函数优化一般有两种方法,第一种是奇异值分解SVD,第二种是特征分解,两者得到的结果一样。

SVD求解CCA

对于上面的优化目标,可以做一次矩阵标准化后在使用SVD来求解。

首先令

进而

优化目标变成下式:

可以看出,SVD的求解方式非常简洁方便。但如果不熟悉SVD的话,也可以用传统的拉格朗日函数加上特征分解来完成这个函数的优化。

特征值分解求CCA

特征分解方式比较传统,利用拉格朗日函数,优化目标转化为最大化下式:

分别对a,b求导并令结果为0得:

进而

现在拉格朗日系数就是我们要优化的目标。继续将上面的两个式子做整理得:

将上面第二个式子带入第一个式子得到

要求最大的相关系数λ,只需要对上面的矩阵做特征分解,找出最大的特征值取平方根即可,此时最大特征值对应的特征向量即为X的线性系数a。同样的办法,可以找到最大特征值对应的特征向量即为Y的线性系数b。

可以看出特征分解的方法要比SVD复杂,但是两者求得的结果其实是等价的,只要利用SVD和特征分解之间的关系就很容易发现两者最后的结果相同。

CCA算法流程

对CCA算法流程做一个归纳,以SVD方法为例:

输入:各为m个的样本X和Y,X和Y的维度都大于1

输出:X,Y的相关系数ρ,X和Y的线性系数向量a和b

流程

1)计算X的方差SXX, Y的方差SYY,X和Y的协方差SXY

2) 计算矩阵

3)对矩阵M进行奇异值分解,得到最大的奇异值ρ,和最大奇异值对应的左右奇异向量

4) 计算X和Y的线性系数向量a和b,

总结

CCA算法广泛的应用于数据相关度的分析,同时还是偏最小二乘法的基础。但是由于它依赖于数据的线性表示,当我们的数据无法线性表示时,CCA就无法使用,此时我们可以利用核函数的思想,将数据映射到高维后,再利用CCA的思想降维到1维,求对应的相关系数和线性关系,这个算法一般称为KCCA。此外,在算法里只找了相关度最大的奇异值或者特征值,作为数据的相关系数,实际上我们也可以像PCA一样找出第二大奇异值,第三大奇异值,。。。得到第二相关系数和第三相关系数。然后对数据做进一步的相关性分析。但是一般的应用来说,找出第一相关系数就可以了。

欢迎分享给他人让更多的人受益

参考:

  1. 周志华《机器学习》
  2. Neural Networks and Deep Learning by By Michael Nielsen
  3. 博客园 http://www.cnblogs.com/pinard/p/6288716.html
  4. 李航《统计学习方法》
  5. Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-12-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习算法与Python学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档