前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow layers模块用法

TensorFlow layers模块用法

作者头像
崔庆才
发布2018-04-04 15:57:31
2.3K0
发布2018-04-04 15:57:31
举报
文章被收录于专栏:进击的Coder进击的Coder

TensorFlow 中的 layers 模块提供用于深度学习的更高层次封装的 API,利用它我们可以轻松地构建模型,这一节我们就来看下这个模块的 API 的具体用法。

概览

layers 模块的路径写法为 tf.layers,这个模块定义在 tensorflow/python/layers/layers.py,其官方文档地址为:https://www.tensorflow.org/api_docs/python/tf/layers,TensorFlow 版本为 1.5。

这里面提供了多个类和方法以供使用,下面我们分别予以介绍。

方法

tf.layers 模块提供的方法有:

  • Input(…): 用于实例化一个输入 Tensor,作为神经网络的输入。
  • average_pooling1d(…): 一维平均池化层
  • average_pooling2d(…): 二维平均池化层
  • average_pooling3d(…): 三维平均池化层
  • batch_normalization(…): 批量标准化层
  • conv1d(…): 一维卷积层
  • conv2d(…): 二维卷积层
  • conv2d_transpose(…): 二维反卷积层
  • conv3d(…): 三维卷积层
  • conv3d_transpose(…): 三维反卷积层
  • dense(…): 全连接层
  • dropout(…): Dropout层
  • flatten(…): Flatten层,即把一个 Tensor 展平
  • max_pooling1d(…): 一维最大池化层
  • max_pooling2d(…): 二维最大池化层
  • max_pooling3d(…): 三维最大池化层
  • separable_conv2d(…): 二维深度可分离卷积层

Input

tf.layers.Input() 这个方法是用于输入数据的方法,其实类似于 tf.placeholder,相当于一个占位符的作用,当然也可以通过传入 tensor 参数来进行赋值。

Input(
    shape=None,
    batch_size=None,
    name=None,
    dtype=tf.float32,
    sparse=False,
    tensor=None
)

参数说明如下:

  • shape:可选,默认 None,是一个数字组成的元组或列表,但是这个 shape 比较特殊,它不包含 batch_size,比如传入的 shape 为 [32],那么它会将 shape 转化为 [?, 32],这里一定需要注意。
  • batch_size:可选,默认 None,代表输入数据的 batch size,可以是数字或者 None。
  • name:可选,默认 None,输入层的名称。
  • dtype:可选,默认 tf.float32,元素的类型。
  • sparse:可选,默认 False,指定是否以稀疏矩阵的形式来创建 placeholder。
  • tensor:可选,默认 None,如果指定,那么创建的内容便不再是一个 placeholder,会用此 Tensor 初始化。

返回值: 返回一个包含历史 Meta Data 的 Tensor。

我们用一个实例来感受一下:

x = tf.layers.Input(shape=[32])
print(x)
y = tf.layers.dense(x, 16, activation=tf.nn.softmax)
print(y)

首先我们用 Input() 方法初始化了一个 placeholder,这时我们没有传入 tensor 参数,然后调用了 dense() 方法构建了一个全连接网络,激活函数使用 softmax,然后将二者输出,结果如下:

Tensor("input_layer_1:0", shape=(?, 32), dtype=float32)
Tensor("dense/Softmax:0", shape=(?, 16), dtype=float32)

这时我们发现,shape 它给我们做了转化,本来是 [32],结果它给转化成了 [?, 32],即第一维代表 batch_size,所以我们需要注意,在调用此方法的时候不需要去关心 batch_size 这一维。

如果我们在初始化的时候传入一个已有 Tensor,例如:

data = tf.constant([1, 2, 3])
x = tf.layers.Input(tensor=data)
print(x)

结果如下:

Tensor("Const:0", shape=(3,), dtype=int32)

可以看到它可以自动计算出其 shape 和 dtype。

batch_normalization

此方法是批量标准化的方法,经过处理之后可以加速训练速度,其定义在 tensorflow/python/layers/normalization.py,论文可以参考:http://arxiv.org/abs/1502.03167"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"。

batch_normalization(
    inputs,
    axis=-1,
    momentum=0.99,
    epsilon=0.001,
    center=True,
    scale=True,
    beta_initializer=tf.zeros_initializer(),
    gamma_initializer=tf.ones_initializer(),
    moving_mean_initializer=tf.zeros_initializer(),
    moving_variance_initializer=tf.ones_initializer(),
    beta_regularizer=None,
    gamma_regularizer=None,
    beta_constraint=None,
    gamma_constraint=None,
    training=False,
    trainable=True,
    name=None,
    reuse=None,
    renorm=False,
    renorm_clipping=None,
    renorm_momentum=0.99,
    fused=None,
    virtual_batch_size=None,
    adjustment=None
)

参数说明如下:

  • inputs:必需,即输入数据。
  • axis:可选,默认 -1,即进行标注化操作时操作数据的哪个维度。
  • momentum:可选,默认 0.99,即动态均值的动量。
  • epsilon:可选,默认 0.01,大于0的小浮点数,用于防止除0错误。
  • center:可选,默认 True,若设为True,将会将 beta 作为偏置加上去,否则忽略参数 beta
  • scale:可选,默认 True,若设为True,则会乘以gamma,否则不使用gamma。当下一层是线性的时,可以设False,因为scaling的操作将被下一层执行。
  • beta_initializer:可选,默认 zeros_initializer,即 beta 权重的初始方法。
  • gamma_initializer:可选,默认 ones_initializer,即 gamma 的初始化方法。
  • moving_mean_initializer:可选,默认 zeros_initializer,即动态均值的初始化方法。
  • moving_variance_initializer:可选,默认 ones_initializer,即动态方差的初始化方法。
  • beta_regularizer: 可选,默认None,beta 的正则化方法。
  • gamma_regularizer: 可选,默认None,gamma 的正则化方法。
  • beta_constraint: 可选,默认None,加在 beta 上的约束项。
  • gamma_constraint: 可选,默认None,加在 gamma 上的约束项。
  • training:可选,默认 False,返回结果是 training 模式。
  • trainable:可选,默认为 True,布尔类型,如果为 True,则将变量添加 GraphKeys.TRAINABLE_VARIABLES 中。
  • name:可选,默认 None,层名称。
  • reuse:可选,默认 None,根据层名判断是否重复利用。
  • renorm:可选,默认 False,是否要用 Batch Renormalization (https://arxiv.org/abs/1702.03275)
  • renorm_clipping:可选,默认 None,是否要用 rmax、rmin、dmax 来 scalar Tensor。
  • renorm_momentum,可选,默认 0.99,用来更新动态均值和标准差的 Momentum 值。
  • fused,可选,默认 None,是否使用一个更快的、融合的实现方法。
  • virtual_batch_size,可选,默认 None,是一个 int 数字,指定一个虚拟 batch size。
  • adjustment,可选,默认 None,对标准化后的结果进行适当调整的方法。

最后的一些参数说明不够详尽,更详细的用法参考:https://www.tensorflow.org/api_docs/python/tf/layers/batch_normalization。

其用法很简单,在输入数据后面加一层 batch_normalization() 即可:

x = tf.layers.Input(shape=[32])
x = tf.layers.batch_normalization(x)
y = tf.layers.dense(x, 20)

dense

dense,即全连接网络,layers 模块提供了一个 dense() 方法来实现此操作,定义在 tensorflow/python/layers/core.py 中,下面我们来说明一下它的用法。

dense(
    inputs,
    units,
    activation=None,
    use_bias=True,
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    trainable=True,
    name=None,
    reuse=None
)

参数说明如下:

  • inputs:必需,即需要进行操作的输入数据。
  • units:必须,即神经元的数量。
  • activation:可选,默认为 None,如果为 None 则是线性激活。
  • use_bias:可选,默认为 True,是否使用偏置。
  • kernel_initializer:可选,默认为 None,即权重的初始化方法,如果为 None,则使用默认的 Xavier 初始化方法。
  • bias_initializer:可选,默认为零值初始化,即偏置的初始化方法。
  • kernel_regularizer:可选,默认为 None,施加在权重上的正则项。
  • bias_regularizer:可选,默认为 None,施加在偏置上的正则项。
  • activity_regularizer:可选,默认为 None,施加在输出上的正则项。
  • kernel_constraint,可选,默认为 None,施加在权重上的约束项。
  • bias_constraint,可选,默认为 None,施加在偏置上的约束项。
  • trainable:可选,默认为 True,布尔类型,如果为 True,则将变量添加到 GraphKeys.TRAINABLE_VARIABLES 中。
  • name:可选,默认为 None,卷积层的名称。
  • reuse:可选,默认为 None,布尔类型,如果为 True,那么如果 name 相同时,会重复利用。

返回值: 全连接网络处理后的 Tensor。

下面我们用一个实例来感受一下它的用法:

x = tf.layers.Input(shape=[32])
print(x)
y1 = tf.layers.dense(x, 16, activation=tf.nn.relu)
print(y1)
y2 = tf.layers.dense(y1, 5, activation=tf.nn.sigmoid)
print(y2)

首先我们用 Input 定义了 [?, 32] 的输入数据,然后经过第一层全连接网络,此时指定了神经元个数为 16,激活函数为 relu,接着输出结果经过第二层全连接网络,此时指定了神经元个数为 5,激活函数为 sigmoid,最后输出,结果如下:

Tensor("input_layer_1:0", shape=(?, 32), dtype=float32)
Tensor("dense/Relu:0", shape=(?, 16), dtype=float32)
Tensor("dense_2/Sigmoid:0", shape=(?, 5), dtype=float32)

可以看到输出结果的最后一维度就等于神经元的个数,这是非常容易理解的。

convolution

convolution,即卷积,这里提供了多个卷积方法,如 conv1d()、conv2d()、conv3d(),分别代表一维、二维、三维卷积,另外还有 conv2d_transpose()、conv3d_transpose(),分别代表二维和三维反卷积,还有 separable_conv2d() 方法代表二维深度可分离卷积。它们定义在 tensorflow/python/layers/convolutional.py 中,其用法都是类似的,在这里以 conv2d() 方法为例进行说明。

conv2d(
    inputs,
    filters,
    kernel_size,
    strides=(1, 1),
    padding='valid',
    data_format='channels_last',
    dilation_rate=(1, 1),
    activation=None,
    use_bias=True,
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    trainable=True,
    name=None,
    reuse=None
)

参数说明如下:

  • inputs:必需,即需要进行操作的输入数据。
  • filters:必需,是一个数字,代表了输出通道的个数,即 output_channels。
  • kernel_size:必需,卷积核大小,必须是一个数字(高和宽都是此数字)或者长度为 2 的列表(分别代表高、宽)。
  • strides:可选,默认为 (1, 1),卷积步长,必须是一个数字(高和宽都是此数字)或者长度为 2 的列表(分别代表高、宽)。
  • padding:可选,默认为 valid,padding 的模式,有 valid 和 same 两种,大小写不区分。
  • data_format:可选,默认 channels_last,分为 channels_last 和 channels_first 两种模式,代表了输入数据的维度类型,如果是 channels_last,那么输入数据的 shape 为 (batch, height, width, channels),如果是 channels_first,那么输入数据的 shape 为 (batch, channels, height, width)。
  • dilation_rate:可选,默认为 (1, 1),卷积的扩张率,如当扩张率为 2 时,卷积核内部就会有边距,3x3 的卷积核就会变成 5x5。
  • activation:可选,默认为 None,如果为 None 则是线性激活。
  • use_bias:可选,默认为 True,是否使用偏置。
  • kernel_initializer:可选,默认为 None,即权重的初始化方法,如果为 None,则使用默认的 Xavier 初始化方法。
  • bias_initializer:可选,默认为零值初始化,即偏置的初始化方法。
  • kernel_regularizer:可选,默认为 None,施加在权重上的正则项。
  • bias_regularizer:可选,默认为 None,施加在偏置上的正则项。
  • activity_regularizer:可选,默认为 None,施加在输出上的正则项。
  • kernel_constraint,可选,默认为 None,施加在权重上的约束项。
  • bias_constraint,可选,默认为 None,施加在偏置上的约束项。
  • trainable:可选,默认为 True,布尔类型,如果为 True,则将变量添加到 GraphKeys.TRAINABLE_VARIABLES 中。
  • name:可选,默认为 None,卷积层的名称。
  • reuse:可选,默认为 None,布尔类型,如果为 True,那么如果 name 相同时,会重复利用。

返回值: 卷积后的 Tensor。

下面我们用实例感受一下它的用法:

x = tf.layers.Input(shape=[20, 20, 3])
y = tf.layers.conv2d(x, filters=6, kernel_size=2, padding='same')
print(y)

这里我们首先声明了一个 [?, 20, 20, 3] 的输入 x,然后将其传给 conv2d() 方法,filters 设定为 6,即输出通道为 6,kernel_size 为 2,即卷积核大小为 2 x 2,padding 方式设置为 same,那么输出结果的宽高和原来一定是相同的,但是输出通道就变成了 6,结果如下:

Tensor("conv2d/BiasAdd:0", shape=(?, 20, 20, 6), dtype=float32)

但如果我们将 padding 方式不传入,使用默认的 valid 模式,代码改写如下:

x = tf.layers.Input(shape=[20, 20, 3])
y = tf.layers.conv2d(x, filters=6, kernel_size=2)
print(y)

结果如下:

Tensor("conv2d/BiasAdd:0", shape=(?, 19, 19, 6), dtype=float32)

结果就变成了 [?, 19, 19, 6],这是因为步长默认为 1,卷积核大小为 2 x 2,所以得到的结果的高宽即为 (20 - (2 - 1)) x (20 - (2 - 1)) = 19 x 19。

当然卷积核我们也可以变换大小,传入一个列表形式:

x = tf.layers.Input(shape=[20, 20, 3])
y = tf.layers.conv2d(x, filters=6, kernel_size=[2, 3])
print(y)

这时我们的卷积核大小变成了 2 x 3,即高为 2,宽为 3,结果就变成了 [?, 19, 18, 6],这是因为步长默认为 1,卷积核大小为 2 x 2,所以得到的结果的高宽即为 (20 - (2 - 1)) x (20 - (3 - 1)) = 19 x 18。

如果我们将步长也设置一下,也传入列表形式:

x = tf.layers.Input(shape=[20, 20, 3])
y = tf.layers.conv2d(x, filters=6, kernel_size=[2, 3], strides=[2, 2])
print(y)

这时卷积核大小变成了 2 x 3,步长变成了 2 x 2,所以结果的高宽为 ceil(20 - (2- 1)) / 2 x ceil(20 - (3- 1)) / 2 = 10 x 9,得到的结果即为 [?, 10, 9, 6]。

运行结果如下:

Tensor("conv2d_4/BiasAdd:0", shape=(?, 10, 9, 6), dtype=float32)

另外我们还可以传入激活函数,或者禁用 bias 等操作,实例如下:

x = tf.layers.Input(shape=[20, 20, 3])
y = tf.layers.conv2d(x, filters=6, kernel_size=2, activation=tf.nn.relu, use_bias=False)
print(y)

这样我们就将激活函数改成了 relu,同时禁用了 bias,运行结果如下:

Tensor("conv2d_5/Relu:0", shape=(?, 19, 19, 6), dtype=float32)

另外还有反卷积操作,反卷积顾名思义即卷积的反向操作,即输入卷积的结果,得到卷积前的结果,其参数用法是完全一样的,例如:

x = tf.layers.Input(shape=[20, 20, 3])
y = tf.layers.conv2d_transpose(x, filters=6, kernel_size=2, strides=2)
print(y)

例如此处输入的图像高宽为 20 x 20,经过卷积核为 2,步长为 2 的反卷积处理,得到的结果高宽就变为了 40 x 40,结果如下:

Tensor("conv2d_transpose/BiasAdd:0", shape=(?, 40, 40, 6), dtype=float32)

pooling

pooling,即池化,layers 模块提供了多个池化方法,这几个池化方法都是类似的,包括 max_pooling1d()、max_pooling2d()、max_pooling3d()、average_pooling1d()、average_pooling2d()、average_pooling3d(),分别代表一维二维三维最大和平均池化方法,它们都定义在 tensorflow/python/layers/pooling.py 中,这里以 max_pooling2d() 方法为例进行介绍。

max_pooling2d(
    inputs,
    pool_size,
    strides,
    padding='valid',
    data_format='channels_last',
    name=None
)

参数说明如下:

  • inputs: 必需,即需要池化的输入对象,必须是 4 维的。
  • pool_size:必需,池化窗口大小,必须是一个数字(高和宽都是此数字)或者长度为 2 的列表(分别代表高、宽)。
  • strides:必需,池化步长,必须是一个数字(高和宽都是此数字)或者长度为 2 的列表(分别代表高、宽)。
  • padding:可选,默认 valid,padding 的方法,valid 或者 same,大小写不区分。
  • data_format:可选,默认 channels_last,分为 channels_last 和 channels_first 两种模式,代表了输入数据的维度类型,如果是 channels_last,那么输入数据的 shape 为 (batch, height, width, channels),如果是 channels_first,那么输入数据的 shape 为 (batch, channels, height, width)。
  • name:可选,默认 None,池化层的名称。

返回值: 经过池化处理后的 Tensor。

下面我们用一个实例来感受一下:

x = tf.layers.Input(shape=[20, 20, 3])
print(x)
y = tf.layers.conv2d(x, filters=6, kernel_size=3, padding='same')
print(y)
p = tf.layers.max_pooling2d(y, pool_size=2, strides=2)
print(p)

在这里我们首先指定了输入 x,shape 为 [20, 20, 3],然后对其进行了卷积计算,然后池化,最后得到池化后的结果。结果如下:

Tensor("input_layer_1:0", shape=(?, 20, 20, 3), dtype=float32)
Tensor("conv2d/BiasAdd:0", shape=(?, 20, 20, 6), dtype=float32)
Tensor("max_pooling2d/MaxPool:0", shape=(?, 10, 10, 6), dtype=float32)

可以看到这里池化窗口用的是 2,步长也是 2,所以原本卷积后 shape 为 [?, 20, 20, 6] 的结果就变成了 [?, 10, 10, 6]。

dropout

dropout 是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃,可以用来防止过拟合,layers 模块中提供了 dropout() 方法来实现这一操作,定义在 tensorflow/python/layers/core.py。下面我们来说明一下它的用法。

dropout(
    inputs,
    rate=0.5,
    noise_shape=None,
    seed=None,
    training=False,
    name=None
)

参数说明如下:

  • inputs:必须,即输入数据。
  • rate:可选,默认为 0.5,即 dropout rate,如设置为 0.1,则意味着会丢弃 10% 的神经元。
  • noise_shape:可选,默认为 None,int32 类型的一维 Tensor,它代表了 dropout mask 的 shape,dropout mask 会与 inputs 相乘对 inputs 做转换,例如 inputs 的 shape 为 (batch_size, timesteps, features),但我们想要 droput mask 在所有 timesteps 都是相同的,我们可以设置 noise_shape=[batch_size, 1, features]。
  • seed:可选,默认为 None,即产生随机熟的种子值。
  • training:可选,默认为 False,布尔类型,即代表了是否标志为 training 模式。
  • name:可选,默认为 None,dropout 层的名称。

返回: 经过 dropout 层之后的 Tensor。

我们用一个实例来感受一下:

x = tf.layers.Input(shape=[32])
print(x)
y = tf.layers.dense(x, 16, activation=tf.nn.softmax)
print(y)
d = tf.layers.dropout(y, rate=0.2)
print(d)

运行结果:

Tensor("input_layer_1:0", shape=(?, 32), dtype=float32)
Tensor("dense/Softmax:0", shape=(?, 16), dtype=float32)
Tensor("dropout/Identity:0", shape=(?, 16), dtype=float32)

在这里我们使用 dropout() 方法实现了 droput 操作,并制定 dropout rate 为 0.2,最后输出结果的 shape 和原来是一致的。

flatten

flatten() 方法可以对 Tensor 进行展平操作,定义在 tensorflow/python/layers/core.py。

flatten(
    inputs,
    name=None
)

参数说明如下:

  • inputs:必需,即输入数据。
  • name:可选,默认为 None,即该层的名称。

返回结果: 展平后的 Tensor。

下面我们用一个实例来感受一下:

x = tf.layers.Input(shape=[5, 6])
print(x)
y = tf.layers.flatten(x)
print(y)

运行结果:

Tensor("input_layer_1:0", shape=(?, 5, 6), dtype=float32)
Tensor("flatten/Reshape:0", shape=(?, 30), dtype=float32)

这里输入数据的 shape 为 [?, 5, 6],经过 flatten 层之后,就会变成 [?, 30],即将除了第一维的数据维度相乘,对原 Tensor 进行展平。

假如第一维是一个已知的数的话,它依然还是同样的处理,示例如下:

x = tf.placeholder(shape=[5, 6, 2], dtype=tf.float32)
print(x)
y = tf.layers.flatten(x)
print(y)

结果如下:

Tensor("Placeholder:0", shape=(5, 6, 2), dtype=float32)
Tensor("flatten_2/Reshape:0", shape=(5, 12), dtype=float32)

除了如上的方法,其实我们还可以直接使用类来进行操作,实际上看方法的实现就是实例化了其对应的类,下面我们首先说明一下有哪些类可以使用:

  • class AveragePooling1D: 一维平均池化层类
  • class AveragePooling2D: 二维平均池化层类
  • class AveragePooling3D: 三维平均池化层类
  • class BatchNormalization: 批量标准化层类
  • class Conv1D: 一维卷积层类
  • class Conv2D: 二维卷积层类
  • class Conv2DTranspose: 二维反卷积层类
  • class Conv3D: 三维卷积层类
  • class Conv3DTranspose: 三维反卷积层类
  • class Dense: 全连接层类
  • class Dropout: Dropout 层类
  • class Flatten: Flatten 层类
  • class InputSpec: Input 层类
  • class Layer: 基类、父类
  • class MaxPooling1D: 一维最大池化层类
  • class MaxPooling2D: 二维最大池化层类
  • class MaxPooling3D: 三维最大池化层类
  • class SeparableConv2D: 二维深度可分离卷积层类

其实类这些类都和上文介绍的方法是一一对应的,关于它的用法我们可以在方法的源码实现里面找到,下面我们以 Dense 类的用法为例来说明一下这些类的具体调用方法:

x = tf.layers.Input(shape=[32])
dense = tf.layers.Dense(16, activation=tf.nn.relu)
y = dense.apply(x)
print(y)

这里我们初始化了一个 Dense 类,它只接受一个必须参数,那就是 units,相比 dense() 方法来说它没有了 inputs,因此这个实例化的类和 inputs 是无关的,这样就相当于创建了一个 16 个神经元的全连接层。

但创建了不调用是没有用的,我们要将这个层构建到网络之中,需要调用它的 apply() 方法,而 apply() 方法就接收 inputs 这个参数,返回计算结果,运行结果如下:

Tensor("dense/Relu:0", shape=(?, 16), dtype=float32)

因此我们可以发现,这些类在初始化的时候实际上是比其对应的方法少了 inputs 参数,其他的参数都是完全一致的,另外需要调用 apply() 方法才可以应用该层并将其构建到模型中。

所以其他的类的用法在此就不一一赘述了,初始化的参数可以类比其对应的方法,实例化类之后,调用 apply() 方法,可以达到同样的构建模型的效果。

结语

以上便是 TensorFlow layers 模块的详细用法说明,更加详细的用法可以参考官方文档:https://www.tensorflow.org/api_docs/python/tf/layers。本节代码地址:https://github.com/AIDeepLearning/TensorFlowLayers。

崔庆才

静觅博客博主

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-02-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 进击的Coder 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概览
  • 方法
    • Input
      • batch_normalization
        • dense
          • convolution
            • pooling
              • dropout
                • flatten
                • 结语
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档