Python:爬虫系列笔记(6) -- 正则化表达(推荐)

在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式!

1.了解正则表达式

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。

正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。

正则表达式的大致匹配过程是: 1.依次拿出表达式和文本中的字符比较, 2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。 3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

2.正则表达式的语法规则

下面是Python中正则表达式的一些匹配规则,图片资料来自CSDN

3.正则表达式相关注解

(1)数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量词”ab*?”,将找到”a”。

注:我们一般使用非贪婪模式来提取。

(2)反斜杠问题

与大多数编程语言相同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反斜杠”\\\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\\”表示。同样,匹配一个数字的”\\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。

4.Python Re模块

Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下

1234567891

#返回pattern对象re.compile(string[,flag]) #以下为匹配所用函数re.match(pattern, string[, flags])re.search(pattern, string[, flags])re.split(pattern, string[, maxsplit])re.findall(pattern, string[, flags])re.finditer(pattern, string[, flags])re.sub(pattern, repl, string[, count])re.subn(pattern, repl, string[, count])

在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如

1

pattern = re.compile(r'hello')

在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。

另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:

参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。

可选值有:

123456

• re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同) • re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图) • re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为 • re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定 • re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性 • re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

在刚才所说的另外几个方法例如 re.match 里我们就需要用到这个pattern了,下面我们一一介绍。

注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。

(1)re.match(pattern, string[, flags])

这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对string向后匹配。下面我们通过一个例子理解一下

运行结果

1234

hellohello3匹配失败!hello

匹配分析

1.第一个匹配,pattern正则表达式为’hello’,我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。

2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。

3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o’ 时无法完成匹配,匹配终止,返回None

4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。

我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法 Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性: 1.string: 匹配时使用的文本。 2.re: 匹配时使用的Pattern对象。 3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。 4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。 5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。 6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。 方法: 1.group([group1, …]): 获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。 2.groups([default]): 以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。 3.groupdict([default]): 返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。 4.start([group]): 返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。 5.end([group]): 返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。 6.span([group]): 返回(start(group), end(group))。 7.expand(template): 将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g0。

下面我们用一个例子来体会一下

123456789101112131415161718192021222

# -*- coding: utf-8 -*-#一个简单的match实例 import re# 匹配如下内容:单词+空格+单词+任意字符m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!') print "m.string:", m.stringprint "m.re:", m.reprint "m.pos:", m.posprint "m.endpos:", m.endposprint "m.lastindex:", m.lastindexprint "m.lastgroup:", m.lastgroupprint "m.group():", m.group()print "m.group(1,2):", m.group(1, 2)print "m.groups():", m.groups()print "m.groupdict():", m.groupdict()print "m.start(2):", m.start(2)print "m.end(2):", m.end(2)print "m.span(2):", m.span(2)print r"m.expand(r'\g \g\g'):", m.expand(r'\2 \1\3') ### output #### m.string: hello world!# m.re: # m.pos: 0# m.endpos: 12# m.lastindex: 3# m.lastgroup: sign# m.group(1,2): ('hello', 'world')# m.groups(): ('hello', 'world', '!')# m.groupdict(): {'sign': '!'}# m.start(2): 6# m.end(2): 11# m.span(2): (6, 11)# m.expand(r'\2 \1\3'): world hello!

(2)re.search(pattern, string[, flags])

search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下

1234567891011

#导入re模块import re # 将正则表达式编译成Pattern对象pattern = re.compile(r'world')# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None# 这个例子中使用match()无法成功匹配match = re.search(pattern,'hello world!')if match: # 使用Match获得分组信息 print match.group()### 输出 #### world

(3)re.split(pattern, string[, maxsplit])

按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。

1234567

import re pattern = re.compile(r'\d+')print re.split(pattern,'one1two2three3four4') ### 输出 #### ['one', 'two', 'three', 'four', '']

(4)re.findall(pattern, string[, flags])

搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下

1234567

import re pattern = re.compile(r'\d+')print re.findall(pattern,'one1two2three3four4') ### 输出 #### ['1', '2', '3', '4']

(5)re.finditer(pattern, string[, flags])

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下

12345678

import re pattern = re.compile(r'\d+')for m in re.finditer(pattern,'one1two2three3four4'): print m.group(), ### 输出 #### 1 2 3 4

(6)re.sub(pattern, repl, string[, count])

使用repl替换string中每一个匹配的子串后返回替换后的字符串。 当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。 当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。 count用于指定最多替换次数,不指定时全部替换。

123456789101112

import re pattern = re.compile(r'(\w+) (\w+)')s = 'i say, hello world!' print re.sub(pattern,r'\2 \1', s) def func(m): return m.group(1).title() + ' ' + m.group(2).title() print re.sub(pattern,func, s) ### output #### say i, world hello!# I Say, Hello World!

(7)re.subn(pattern, repl, string[, count])

返回 (sub(repl, string[, count]), 替换次数)。

123456789101112

import re pattern = re.compile(r'(\w+) (\w+)')s = 'i say, hello world!' print re.subn(pattern,r'\2 \1', s) def func(m): return m.group(1).title() + ' ' + m.group(2).title() print re.subn(pattern,func, s) ### output #### ('say i, world hello!', 2)# ('I Say, Hello World!', 2)

5.Python Re模块的另一种使用方式

在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。

函数API列表

1234567

match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]) search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]) split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]) findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]) finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]) sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]) subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])

具体的调用方法不必详说了,原理都类似,只是参数的变化不同。小伙伴们尝试一下吧~

小伙伴们加油,即使这一节看得云里雾里的也没关系,接下来我们会通过一些实战例子来帮助大家熟练掌握正则表达式的。

转载:静觅 » Python爬虫入门七之正则表达式

本文分享自微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2016-06-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏漏斗社区

CTF| 你想要的RSA解题技巧(二)

上一期已经给大家分享了RSA的基本解题思路,总结如下,本期带来几种复杂的RSA题目解法。 ? 以上都是基本解法,基于n能够分解的前提下进行的解法,但是当题目n的...

47180
来自专栏漏斗社区

工具| 手把手教你制作信息收集器之端口扫描

本期任务:使用python脚本实现端口扫描。 准备工具:选项分析器:optparse;网络库:socket 问题引入 1. 端口扫描器扫描效果如何? ...

38160
来自专栏漏斗社区

工具| 关于Python线程和队列使用的小思考

斗哥采访环节 (1). 请问为什么要使用线程? 答:为了提高程序速度,代码效率呀。 (2). 请问为什么要使用队列? 答:个人认为队列可以保证线程安全,实...

39160
来自专栏IT派

2017年12月编程语言排名榜发布,Python稳坐前四

IT派 - {技术青年圈} 持续关注互联网、大数据、人工智能领域 TIOBE 快要宣布“2017 年度编程语言”得主,而 Kotlin 和 C 语言目前成...

44860
来自专栏AI研习社

定了!Python 团队将于 2020 年 1 月 1 日停止支持 Python 2.7

AI 研习社消息,日前,Python 初始设计者及主要架构师 Guido van Rossum 在 Python 官方邮件组表示,他们将于 2020 年 1 月...

405150
来自专栏AI研习社

Github 项目推荐 | 用 Python 实现的基础机器学习算法

本库包含了用 Python (3.6 版本及以上)实现的基本的机器学习算法,所有的算法都是从头开始写并且没有用到其他的机器学习库。该库旨在让开发者对这些基本的机...

454110
来自专栏python学习指南

Python网络_UDP编程

本章将介绍UDP编程,更多内容请参考:Python学习指南 TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据。相对TCP连接,UDP则是面向无连接的...

39460
来自专栏AI研习社

Github 项目推荐 | 可提取结构化信息的自然语言理解 Python 库 Snips NLU

Snips NLU 是一个用于自然语言理解的 Python 库,它可以解析用自然语言书写的句子,同时抽取出结构化信息。 该库支持 Snips Console 使...

49360
来自专栏漏斗社区

CTF|玩转RSA加密算法(一)

RSA是一种非对称加密算法,它由 公钥(n/e),私钥(n/d),明文M和密文C组成。我们做CTF题目时,一般题目中会给出公钥和密文让我们推出对应的私钥或者明文...

96490
来自专栏IT派

人民日报整版报道区块链,我只想知道用什么语言开发?

IT派 - {技术青年圈} 持续关注互联网、区块链、人工智能领域 2月26日,《人民日报》经济版头条整版刊发了区块链署名评论文章《三问区块链》《抓住区块链这...

1.6K60

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励