专栏首页机器学习算法与Python学习干货|详解CNN五大经典模型:Lenet,Alexnet,Googlenet,VGG,DRL

干货|详解CNN五大经典模型:Lenet,Alexnet,Googlenet,VGG,DRL

文章来源:CSDN 作者:大饼博士X

关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。

  1. Lenet,1986年
  2. Alexnet,2012年
  3. GoogleNet,2014年
  4. VGG,2014年
  5. Deep Residual Learning,2015年

Lenet

就从Lenet说起,可以看下caffe中lenet的配置文件(1),可以试着理解每一层的大小,和各种参数。由两个卷积层,两个池化层,以及两个全连接层组成。 卷积都是5*5的模板,stride=1,池化都是MAX。下图是一个类似的结构,可以帮助理解层次结构(和caffe不完全一致,不过基本上差不多)

(1)网址:https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt

Alexnet

2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名)。caffe的model文件在(2)。说实话,这个model的意义比后面那些model都大很多,首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,确实让CNN和GPU都大火了一把,顺便推动了有监督DL的发展。

(2)https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt

模型结构见下图,别看只有寥寥八层(不算input层),但是它有60M以上的参数总量,事实上在参数量上比后面的网络都大。

这个图有点点特殊的地方是卷积部分都是画成上下两块,意思是说吧这一层计算出来的feature map分开,但是前一层用到的数据要看连接的虚线,如图中input层之后的第一层第二层之间的虚线是分开的,是说二层上面的128map是由一层上面的48map计算的,下面同理;而第三层前面的虚线是完全交叉的,就是说每一个192map都是由前面的128+128=256map同时计算得到的。

Alexnet有一个特殊的计算层,LRN层,做的事是对当前层的输出结果做平滑处理。下面是我画的示意图:

前后几层(对应位置的点)对中间这一层做一下平滑约束,计算方法是:

具体打开Alexnet的每一阶段(含一次卷积主要计算)来看[2][3]:

(1)con - relu - pooling - LRN

具体计算都在图里面写了,要注意的是input层是227*227,而不是paper里面的224*224,这里可以算一下,主要是227可以整除后面的conv1计算,224不整除。如果一定要用224可以通过自动补边实现,不过在input就补边感觉没有意义,补得也是0。

(2)conv - relu - pool - LRN

和上面基本一样,唯独需要注意的是group=2,这个属性强行把前面结果的feature map分开,卷积部分分成两部分做。

(3)conv - relu

(4)conv-relu

(5)conv - relu - pool

(6)fc - relu - dropout

这里有一层特殊的dropout层,在alexnet中是说在训练的以1/2概率使得隐藏层的某些neuron的输出为0,这样就丢到了一半节点的输出,BP的时候也不更新这些节点。

(7) fc - relu - dropout

(8)fc - softmax

以上图借用[3],感谢。

GoogleNet

googlenet[4][5],14年比赛冠军的model,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构。(当然,它并没有证明浅的层次不能达到这样的效果)

这个model基本上构成部件和alexnet差不多,不过中间有好几个inception的结构:

是说一分四,然后做一些不同大小的卷积,之后再堆叠feature map。

计算量如下图,可以看到参数总量并不大,但是计算次数是非常大的。

VGG

VGG有很多个版本,也算是比较稳定和经典的model。它的特点也是连续conv多,计算量巨大(比前面几个都大很多)。具体的model结构可以参考[6],这里给一个简图。基本上组成构建就是前面alexnet用到的。

下面是几个model的具体结构,可以查阅,很容易看懂。

Deep Residual Learning

这个model是2015年底最新给出的,也是15年的imagenet比赛冠军。可以说是进一步将conv进行到底,其特殊之处在于设计了“bottleneck”形式的block(有跨越几层的直连)。最深的model采用的152层!!下面是一个34层的例子,更深的model见表格。

其实这个model构成上更加简单,连LRN这样的layer都没有了。

block的构成见下图:

总结

OK,到这里把常见的最新的几个model都介绍完了,可以看到,目前cnn model的设计思路基本上朝着深度的网络以及更多的卷积计算方向发展。虽然有点暴力,但是效果上确实是提升了。当然,我认为以后会出现更优秀的model,方向应该不是更深,而是简化。是时候动一动卷积计算的形式了。

本文分享自微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-04-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 20项任务全面碾压BERT,全新XLNet预训练模型

    这是继BERT发布以来又一个令广大NLPer兴奋的消息, CMU 与谷歌大脑提出的 XLNet 在 20 个任务上超过了 BERT 的表现,并在 18 个任务上...

    昱良
  • 入门 | 简单实用的DL优化技巧

    本文介绍了几个深度学习模型的简单优化技巧,包括迁移学习、dropout、学习率调整等,并展示了如何用 Keras 实现。

    昱良
  • 火爆全球的GPT-3,到底凭什么砸大家饭碗?

    GPT-3是指第三代生成式预训练Transformer,它由旧金山AI公司OpenAI开发。该程序历经数年的发展,最近在AI文本生成领域内掀起了一波的创新浪潮。...

    昱良
  • 卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。  技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同...

    bear_fish
  • [优化] [CI代码解读] $this->load->model() 问题

    Home 控制器内加载了 menu目录下的 Menu_model和user/User_model 。 menu/Menu_model 又加载了 role/Use...

    CrazyCodes
  • Ext.grid.CheckboxSelectionModel状态设置

    直接上代码: var model = grid.getSelectionModel(); model.selectAll();//选择所有行 model.sel...

    Java中文社群-磊哥
  • 用AI生成霉霉(Taylor Swift)的歌词(下)

    本文中蓝色字体为外部链接,部分外部链接无法从文章中直接跳转,请点击【阅读原文】以访问。

    AiTechYun
  • TensorFlow 模型剪枝

    在上一篇文章“神经网络剪枝2019”(点击文末阅读原文可以打开知乎原文)中,我们回顾了一些关于修剪神经网络的优秀文献。我们了解到,剪枝是一种模型优化技术,包括去...

    McGL
  • 扶稳!四大步“上手”超参数调优教程,就等你出马了 | 附完整代码

    【导读】在本文中,我们将为大家介绍如何对神经网络的超参数进行优化调整,以便在 Beale 函数上获得更高性能,Beale 函数是评价优化有效性的众多测试函数之一...

    AI科技大本营
  • Caffe2 - (九)MNIST 手写字体识别

    AIHGF

扫码关注云+社区

领取腾讯云代金券