为什么程序员一定要学深度学习

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第二

【Python】:排名第三

【算法】:排名第四

对于深度学习,我也是一个初学者,能力有限,但这些的确是我现在的真实想法,我也会按这个思路去尝试。

1

我是一个好奇心很重的人。深度学习刚开始流行的时候,我就做过简单的学习。当时我的结论是短期内,深度学习只能在弱智能徘徊,很难进展到强智能。

这个结论在今天看来,也不算过时。但真正被深度学习给 Shock 到,是去年和某教育 APP 的 CEO 同学聊天。他告诉我,在教育这个垂直领域,他们的语音识别率已经比讯飞要高了,依赖于大量的数据;更 NB 的是,加上 NLP,他们的 AI 已经可以帮老师改主观题了。主观题啊,就是数学的问答题,语文的作文。

这让我开始重新思考弱智能。

2

完全依靠强智能的应用场景,会产生很多问题。比如自动驾驶,要想在中国这种交通环境下运行,一时半会儿是不行。即使是一个看起来简单的问答机器人,也没一家真正做好,你多问 siri 几句,她很快就晕了。

经常关注我微博同学会知道,我最喜欢说的一句话就是:「能自动化的,要自动化;不能自动化的,要半自动化」。

在人工智能上,这个法则似乎依然是有效的。既然现在强智能还不够强,那么为什么我们不用弱智能+人工确认的方式,来实现「半智能化」呢:用机器帮你做预选,你来做最终选择,虽然依然包含了人工干预,但却可以把生产效率提升几十倍。

3

有同学和我说,找不到应用深度学习的场景,这是因为太执着于强智能,想让机器独立处理所有事情;如果使用「半自动化」的思路,你会发现遍地都是场景。

最典型的场景就是「按需求进行组合搭配」。拿今天小程序举例,小程序在框架层上,将功能分隔到了page 的粒度,这使得小程序的组件会很好的被重用;而在设计上,小程序提供了统一的官方指导风格,所以不会出现太多个性化的东西。

我需要一个用户资料管理, xpm install user-profile;我需要动态 Feed 流,xpm install feed-timeline 。

然后这货就喊着要去做,还在 GitHub 上开了个坑,据说 SDK 已经写完,安装器年前能开始内测。https://git.oschina.net/xpmjs/xpm

然后我告诉他,你得赶紧做,从长远看,通用应用最后是不太值钱的,因为很快就有开源项目把它做得很好。真正值钱的是,下沉到行业里边的应用。比如说吧,同样是用户资料页,房地产行业的、猎头行业的以及技术社区的会完全不一样。但区别也就是添加几个行业特定的字段而已。 大量的「二次开发」工作,才是最为琐碎又最为挣钱的。

这就是典型的可以用上深度学习的场景。通过抓取对应行业的 H5 页面,我们很快就可以把各个行业需要哪些可能的字段给整理出来,然后把这些交给机器进行学习,当再有新的需求进来的时候,机器就可以自动配好预设字段。机器会出错么?当然。但哪怕是80%的准确率,也已经可以节省掉好几个程序员了。

为什么我要学深度学习? 因为这背后是 TM 白花花的银子。

4

其实细心的同学会发现,我一直说的是「深度学习」而不是「机器学习」。

因为我的目的很简单,那就是用。在学习第一年,我给自己定的目标不是要理解「机器学习」的原理,而是要把「深度学习」用到自己产品的方方面面。

先学「深度学习」还有一个好处,那就是不用太多「机器学习」的基础。能把tensorflow、kears 这种开源框架搭起来,然后喂数据,然后看结果。等到优化的时候再去补知识点。

因为深度学习更像是一个黑盒子,现在很多专门搞深度学习的同学也说不清楚为什么要建三个层、要放四个节点;什么情况下用什么激活函数。只说通过实践+观察数据慢慢调整。这简直就是新手上路的最好切入点嘛。

如果不想在本地搭建环境,AWS 上已经有可以用的镜像,基于 API 的深度学习服务也日益增多。这东西就像水电气一样,用比学重要。

也有同学严谨的指出,很多场合下,机器学习的其他方法远比深度学习有效。他们是对的,如果说学好整个机器学习,可以做到90分;那么光用深度学习,可能只有70分。但现在绝大部分的程序,连 TM 一点智能都还没用上呢。从零分到70分,只需要把深度学习用起来。

为什么我要学习深度学习,因为这 TM的性价比太高。

原文发布于微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文发表时间:2017-09-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏王清培的专栏

浅谈微服务的来龙去脉

浅谈微服务的来龙去脉 背景介绍 微服务怎么来的 微服务是进化出来的 微服务不是银弹 作者:王清培(Plen wang) 背景介绍 最近一段时间公共业务平台在进行...

21710
来自专栏AI研习社

什么才算是真正的数据科学家?你算么?

Data Scientist,数据科学家,太火了,已经成为新一代改变世界的职业,引得每一个人都想往这个方向转。 学 CS 的觉得做码农太底层,给人打工,要转数据...

3427
来自专栏JAVA高级架构

架构漫谈(四):如何做好架构之架构切分

架构漫谈是由资深架构师王概凯Kevin执笔的系列专栏,专栏将会以Kevin的架构经验为基础,逐步讨论什么是架构、怎样做好架构、软件架构如何落地、如何写好程序等问...

25910

机器学习自学指南

你有许多方法和资源来学习机器学习:阅读书籍、学习课程、参加比赛和各种可用的工具。在这篇文章中,我想使这些活动更为体系化,并列出一个大致的顺序,以说明在普通程序员...

2708
来自专栏全栈数据化营销

精益数据分析:对商业模式、创业阶段、数据指标、数据测试方法的数据分析

随着“数据驱动产品设计”的理念被越来越多的公司所认可,越来越多的人认识到数据分析的重要性,数据分析也成为产品经理的一项必备技能。但是到我们在进行数据分析的过程中...

3345
来自专栏CDA数据分析师

数据科学求职丨简历中应避免的四个错误

通过了解数百家公司在招聘过程,我们了解到哪些简历是公司所青睐的,以及哪些简历是会被否决。

1271
来自专栏数据科学与人工智能

知识图谱的应用

导读 知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各...

1.2K8
来自专栏PPV课数据科学社区

机器学习编程语言之争,Python夺魁

随着科技的发展,拥有高容量、高速度和多样性的大数据已经成为当今时代的主题词。数据科学领域中所采用的机器学习编程语言大相径庭。究竟哪种语言最适合机器学习成为争论...

3705
来自专栏数据库

论道数据仓库维度建模和关系建模

为什么要数据仓库建模呢? 如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作...

3077
来自专栏CDA数据分析师

疯狂树懒变身超级阿尔法狗,数据分析师必学四大精髓

? 作为一个数据分析人员,有没有经常被业务人员抱怨报表出的太慢、被工程师嫌弃埋点沟通不精准、甚至被老板怀疑并没有创造什么商业价值……. 好好学习这四步分...

2018

扫码关注云+社区