核技巧

关于映射到更高维平面的方法。

对数据进行某种形式的转换,从而得到新的变量来表示数据。从一个特征空间转换到另一个特征空间(特征空间映射)。

其实也就是另外一种距离计算的方法。空间变换后,在高维空间解决线性问题,等价于在低维空间解决非线性问题。

内积计算:

a=(a1,a2,a3,a4,…,an),b=(b1,b2,b3…,bn)

内积公式

高斯核,线性核,多项式核

而由于高斯核(径向基函数的高斯版本)是

高斯核

高斯核能够基于向量的距离输出一个标量。内积的形式是向量相乘,得到单个标量或者数值,即维度一致,对应相乘相加即可。把内积运算替换成核函数,而不必做简化处理。(这就是核技巧)

这样的指数形式,故可以用泰勒展开式展开成无穷级数的形式,每一项的x前系数都不同,而这里也就对应着其特征的不同。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏desperate633

小白也能看懂的BP反向传播算法之Surpass Backpropagation

上篇文章小白也能看懂的BP反向传播算法之Further into Backpropagation中,我们小试牛刀,将反向传播算法运用到了一个两层的神经网络结构中...

21120
来自专栏机器学习算法原理与实践

决策树算法原理(下)

    在决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复...

11310
来自专栏文武兼修ing——机器学习与IC设计

深入理解感知机

1.模型 感知机的模型如下图所示: ? linear_classifier_structure.png 公式表示如下所示: $$ f(x) = sign(...

384100
来自专栏闪电gogogo的专栏

《统计学习方法》笔记二 感知机

感知机(perceptron)是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,取±1。感知机对应与输入空间中将实例划分为正负两类的分离超平面,属...

8720
来自专栏null的专栏

机器学习算法实现解析——libFM之libFM的训练过程之Adaptive Regularization

本节主要介绍的是libFM源码分析的第五部分之二——libFM的训练过程之Adaptive Regularization的方法。 5.3、Adaptive Re...

71170
来自专栏机器学习算法工程师

RNN入门与实践

作者:叶虎 编辑:黄俊嘉 引言 递归神经网络(Recurrent Neural Network, RNN)是神经网络家族的重要成员,而且也是深度学习领域中的得...

39970
来自专栏智能算法

KNN最近邻算法及其Python实现

k-NN是一种基本的分类和回归方法,用于分类时,算法思路较简单:通过计算不同特征之间的距离方法来得到最近的k个训练实例,根据k个实例的类别采用多数表决等方式进...

94470
来自专栏算法channel

全面总结机器学习项目和面试中几乎绕不开的决策树

决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。

12300
来自专栏杨熹的专栏

用 Doc2Vec 得到文档/段落/句子的向量表达

本文结构: Doc2Vec 有什么用 两种实现方法 用 Gensim 训练 Doc2Vec ---- Doc2Vec 或者叫做 paragraph2vec, s...

2K100
来自专栏机器之心

机器之心GitHub项目:从循环到卷积,探索序列建模的奥秘

机器之心原创 作者:蒋思源 本文讨论并实现了用于序列模型的基本深度方法,其中循环网络主要介绍了传统的 LSTM 与 GRU,而卷积网络主要介绍了最近 CMU 研...

94360

扫码关注云+社区

领取腾讯云代金券