专栏首页专知【专知荟萃20】图像分割Image Segmentation知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

【专知荟萃20】图像分割Image Segmentation知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

  • 图像分割 (Image Segmentation) 专知荟萃
    • 入门学习
    • 进阶论文
    • 综述
    • Tutorial
    • 视频教程
    • 代码
    • Semantic segmentation
    • Instance aware segmentation
    • Satellite images segmentation
    • Video segmentation
    • Autonomous driving
    • Annotation Tools:
    • Datasets
    • 比赛
    • 领域专家

入门学习

  1. A 2017 Guide to Semantic Segmentation with Deep Learning 概述——用深度学习做语义分割
    • [http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]
    • 中文翻译:[http://simonduan.site/2017/07/23/notes-semantic-segmentation-deep-learning-review/]
  2. 从全卷积网络到大型卷积核:深度学习的语义分割全指南
    • [https://www.jiqizhixin.com/articles/2017-07-14-10]
  3. Fully Convolutional Networks
    • [http://simtalk.cn/2016/11/01/Fully-Convolutional-Networks/]
  4. 语义分割中的深度学习方法全解:从FCN、SegNet到各代DeepLab
    • [https://zhuanlan.zhihu.com/p/27794982]
  5. 图像语义分割之FCN和CRF
    • [https://zhuanlan.zhihu.com/p/22308032]
  6. 从特斯拉到计算机视觉之「图像语义分割」
    • [http://www.52cs.org/?p=1089]
  7. 计算机视觉之语义分割
    • [http://blog.geohey.com/ji-suan-ji-shi-jue-zhi-yu-yi-fen-ge/]
  8. Segmentation Results: VOC2012 PASCAL语义分割比赛排名
    • [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]

进阶论文

  1. U-Net [https://arxiv.org/pdf/1505.04597.pdf]
  2. SegNet [https://arxiv.org/pdf/1511.00561.pdf]
  3. DeepLab [https://arxiv.org/pdf/1606.00915.pdf]
  4. FCN [https://arxiv.org/pdf/1605.06211.pdf]
  5. ENet [https://arxiv.org/pdf/1606.02147.pdf]
  6. LinkNet [https://arxiv.org/pdf/1707.03718.pdf]
  7. DenseNet [https://arxiv.org/pdf/1608.06993.pdf]
  8. Tiramisu [https://arxiv.org/pdf/1611.09326.pdf]
  9. DilatedNet [https://arxiv.org/pdf/1511.07122.pdf]
  10. PixelNet [https://arxiv.org/pdf/1609.06694.pdf]
  11. ICNet [https://arxiv.org/pdf/1704.08545.pdf]
  12. ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf]
  13. RefineNet [https://arxiv.org/pdf/1611.06612.pdf]
  14. PSPNet [https://arxiv.org/pdf/1612.01105.pdf]
  15. CRFasRNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]
  16. Dilated convolution [https://arxiv.org/pdf/1511.07122.pdf]
  17. DeconvNet [https://arxiv.org/pdf/1505.04366.pdf]
  18. FRRN [https://arxiv.org/pdf/1611.08323.pdf]
  19. GCN [https://arxiv.org/pdf/1703.02719.pdf]
  20. DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf]
  21. Segaware [https://arxiv.org/pdf/1708.04607.pdf]
  22. Semantic Segmentation using Adversarial Networks [https://arxiv.org/pdf/1611.08408.pdf]

综述

  1. A Review on Deep Learning Techniques Applied to Semantic Segmentation Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Jose Garcia-Rodriguez 2017
    • [https://arxiv.org/abs/1704.06857]
  2. Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
    • [https://arxiv.org/abs/1704.05519]
  3. 基于内容的图像分割方法综述 姜 枫 顾 庆 郝慧珍 李 娜 郭延文 陈道蓄 2017
    • [http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=5136&journal_id=jos\]

Tutorial

  1. Semantic Image Segmentation with Deep Learning
    • [http://www.robots.ox.ac.uk/~sadeep/files/crfasrnn_presentation.pdf\]
  2. A 2017 Guide to Semantic Segmentation with Deep Learning
    • [http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]
  3. Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
    • [http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/]

视频教程

  1. CS231n: Convolutional Neural Networks for Visual Recognition Lecture 11 Detection and Segmentation
    • [http://cs231n.stanford.edu/syllabus.html]
  2. Machine Learning for Semantic Segmentation - Basics of Modern Image Analysis
    • [https://www.youtube.com/watch?v=psLChcm8aiU]

代码

Semantic segmentation

  1. U-Net (https://arxiv.org/pdf/1505.04597.pdf)
    • https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (Caffe - Matlab)
    • https://github.com/jocicmarko/ultrasound-nerve-segmentation (Keras)
    • https://github.com/EdwardTyantov/ultrasound-nerve-segmentation (Keras)
    • https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model (Keras)
    • https://github.com/yihui-he/u-net (Keras)
    • https://github.com/jakeret/tf_unet (Tensorflow)
    • https://github.com/DLTK/DLTK/blob/master/examples/Toy_segmentation/simple_dltk_unet.ipynb (Tensorflow)
    • https://github.com/divamgupta/image-segmentation-keras (Keras)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/akirasosa/mobile-semantic-segmentation (Keras)
    • https://github.com/orobix/retina-unet (Keras)
  2. SegNet (https://arxiv.org/pdf/1511.00561.pdf)
    • https://github.com/alexgkendall/caffe-segnet (Caffe)
    • https://github.com/developmentseed/caffe/tree/segnet-multi-gpu (Caffe)
    • https://github.com/preddy5/segnet (Keras)
    • https://github.com/imlab-uiip/keras-segnet (Keras)
    • https://github.com/andreaazzini/segnet (Tensorflow)
    • https://github.com/fedor-chervinskii/segnet-torch (Torch)
    • https://github.com/0bserver07/Keras-SegNet-Basic (Keras)
    • https://github.com/tkuanlun350/Tensorflow-SegNet (Tensorflow)
    • https://github.com/divamgupta/image-segmentation-keras (Keras)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/chainer/chainercv/tree/master/examples/segnet (Chainer)
    • https://github.com/ykamikawa/keras-SegNet (Keras)
  3. DeepLab (https://arxiv.org/pdf/1606.00915.pdf)
    • https://bitbucket.org/deeplab/deeplab-public/ (Caffe)
    • https://github.com/cdmh/deeplab-public (Caffe)
    • https://bitbucket.org/aquariusjay/deeplab-public-ver2 (Caffe)
    • https://github.com/TheLegendAli/DeepLab-Context (Caffe)
    • https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab (MXNet)
    • https://github.com/DrSleep/tensorflow-deeplab-resnet (Tensorflow)
    • https://github.com/muyang0320/tensorflow-deeplab-resnet-crf (TensorFlow)
    • https://github.com/isht7/pytorch-deeplab-resnet (PyTorch)
    • https://github.com/bermanmaxim/jaccardSegment (PyTorch)
    • https://github.com/martinkersner/train-DeepLab (Caffe)
    • https://github.com/chenxi116/TF-deeplab (Tensorflow)
  4. FCN (https://arxiv.org/pdf/1605.06211.pdf)
    • https://github.com/vlfeat/matconvnet-fcn (MatConvNet)
    • https://github.com/shelhamer/fcn.berkeleyvision.org (Caffe)
    • https://github.com/MarvinTeichmann/tensorflow-fcn (Tensorflow)
    • https://github.com/aurora95/Keras-FCN (Keras)
    • https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras (Keras)
    • https://github.com/k3nt0w/FCN_via_keras (Keras)
    • https://github.com/shekkizh/FCN.tensorflow (Tensorflow)
    • https://github.com/seewalker/tf-pixelwise (Tensorflow)
    • https://github.com/divamgupta/image-segmentation-keras (Keras)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/wkentaro/pytorch-fcn (PyTorch)
    • https://github.com/wkentaro/fcn (Chainer)
    • https://github.com/apache/incubator-mxnet/tree/master/example/fcn-xs (MxNet)
    • https://github.com/muyang0320/tf-fcn (Tensorflow)
    • https://github.com/ycszen/pytorch-seg (PyTorch)
    • https://github.com/Kaixhin/FCN-semantic-segmentation (PyTorch)
  5. ENet (https://arxiv.org/pdf/1606.02147.pdf)
    • https://github.com/TimoSaemann/ENet (Caffe)
    • https://github.com/e-lab/ENet-training (Torch)
    • https://github.com/PavlosMelissinos/enet-keras (Keras)
  6. LinkNet (https://arxiv.org/pdf/1707.03718.pdf)
    • https://github.com/e-lab/LinkNet (Torch)
  7. DenseNet (https://arxiv.org/pdf/1608.06993.pdf)
    • https://github.com/flyyufelix/DenseNet-Keras (Keras)
  8. Tiramisu (https://arxiv.org/pdf/1611.09326.pdf)
    • https://github.com/0bserver07/One-Hundred-Layers-Tiramisu (Keras)
    • https://github.com/SimJeg/FC-DenseNet (Lasagne)
  9. DilatedNet (https://arxiv.org/pdf/1511.07122.pdf)
    • https://github.com/nicolov/segmentation_keras (Keras)
  10. PixelNet (https://arxiv.org/pdf/1609.06694.pdf)
    • https://github.com/aayushbansal/PixelNet (Caffe)
  11. ICNet (https://arxiv.org/pdf/1704.08545.pdf)
    • https://github.com/hszhao/ICNet (Caffe)
  12. ERFNet (http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf)
    • https://github.com/Eromera/erfnet (Torch)
  13. RefineNet (https://arxiv.org/pdf/1611.06612.pdf)
    • https://github.com/guosheng/refinenet (MatConvNet)
  14. PSPNet (https://arxiv.org/pdf/1612.01105.pdf)
    • https://github.com/hszhao/PSPNet (Caffe)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/mitmul/chainer-pspnet (Chainer)
    • https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow (Keras/Tensorflow)
    • https://github.com/pudae/tensorflow-pspnet (Tensorflow)
  15. CRFasRNN (http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf)
    • https://github.com/torrvision/crfasrnn (Caffe)
    • https://github.com/sadeepj/crfasrnn_keras (Keras)
  16. Dilated convolution (https://arxiv.org/pdf/1511.07122.pdf)
    • https://github.com/fyu/dilation (Caffe)
    • https://github.com/fyu/drn#semantic-image-segmentataion (PyTorch)
    • https://github.com/hangzhaomit/semantic-segmentation-pytorch (PyTorch)
  17. DeconvNet (https://arxiv.org/pdf/1505.04366.pdf)
    • http://cvlab.postech.ac.kr/research/deconvnet/ (Caffe)
    • https://github.com/HyeonwooNoh/DeconvNet (Caffe)
    • https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation (Tensorflow)
  18. FRRN (https://arxiv.org/pdf/1611.08323.pdf)
    • https://github.com/TobyPDE/FRRN (Lasagne)
  19. GCN (https://arxiv.org/pdf/1703.02719.pdf)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/ycszen/pytorch-seg (PyTorch)
  20. DUC, HDC (https://arxiv.org/pdf/1702.08502.pdf)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/ycszen/pytorch-seg (PyTorch)
  21. Segaware (https://arxiv.org/pdf/1708.04607.pdf)
    • https://github.com/aharley/segaware (Caffe)
  22. Semantic Segmentation using Adversarial Networks (https://arxiv.org/pdf/1611.08408.pdf)
    • https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks (Chainer)

Instance aware segmentation

  1. FCIS [https://arxiv.org/pdf/1611.07709.pdf]
    • https://github.com/msracver/FCIS [MxNet]
  2. MNC [https://arxiv.org/pdf/1512.04412.pdf]
    • https://github.com/daijifeng001/MNC [Caffe]
  3. DeepMask [https://arxiv.org/pdf/1506.06204.pdf]
    • https://github.com/facebookresearch/deepmask [Torch]
  4. SharpMask [https://arxiv.org/pdf/1603.08695.pdf]
    • https://github.com/facebookresearch/deepmask [Torch]
  5. Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]
    • https://github.com/CharlesShang/FastMaskRCNN [Tensorflow]
    • https://github.com/TuSimple/mx-maskrcnn [MxNet]
    • https://github.com/matterport/Mask_RCNN [Keras]
    1. https://github.com/jasjeetIM/Mask-RCNN [Caffe]
  6. RIS [https://arxiv.org/pdf/1511.08250.pdf]
    • https://github.com/bernard24/RIS [Torch]
  7. FastMask [https://arxiv.org/pdf/1612.08843.pdf]
    • https://github.com/voidrank/FastMask [Caffe]

Satellite images segmentation

  • https://github.com/mshivaprakash/sat-seg-thesis
  • https://github.com/KGPML/Hyperspectral
  • https://github.com/lopuhin/kaggle-dstl
  • https://github.com/mitmul/ssai
  • https://github.com/mitmul/ssai-cnn
  • https://github.com/azavea/raster-vision
  • https://github.com/nshaud/DeepNetsForEO
  • https://github.com/trailbehind/DeepOSM

Video segmentation

  • https://github.com/shelhamer/clockwork-fcn
  • https://github.com/JingchunCheng/Seg-with-SPN

Autonomous driving

  • https://github.com/MarvinTeichmann/MultiNet
  • https://github.com/MarvinTeichmann/KittiSeg
  • https://github.com/vxy10/p5_VehicleDetection_Unet [Keras]
  • https://github.com/ndrplz/self-driving-car
  • https://github.com/mvirgo/MLND-Capstone

Annotation Tools:

  • https://github.com/AKSHAYUBHAT/ImageSegmentation
  • https://github.com/kyamagu/js-segment-annotator
  • https://github.com/CSAILVision/LabelMeAnnotationTool
  • https://github.com/seanbell/opensurfaces-segmentation-ui
  • https://github.com/lzx1413/labelImgPlus
  • https://github.com/wkentaro/labelme

Datasets

  1. Stanford Background Dataset[http://dags.stanford.edu/projects/scenedataset.html]
    1. Sift Flow Dataset[http://people.csail.mit.edu/celiu/SIFTflow/]
    2. Barcelona Dataset[http://www.cs.unc.edu/~jtighe/Papers/ECCV10/]
    3. Microsoft COCO dataset[http://mscoco.org/]
    4. MSRC Dataset[http://research.microsoft.com/en-us/projects/objectclassrecognition/]
    5. LITS Liver Tumor Segmentation Dataset[https://competitions.codalab.org/competitions/15595]
    6. KITTI[http://www.cvlibs.net/datasets/kitti/eval_road.php]
    7. Stanford background dataset[http://dags.stanford.edu/projects/scenedataset.html]
    8. Data from Games dataset[https://download.visinf.tu-darmstadt.de/data/from_games/]
    9. Human parsing dataset[https://github.com/lemondan/HumanParsing-Dataset]
    10. Silenko person database[https://github.com/Maxfashko/CamVid]
    11. Mapillary Vistas Dataset[https://www.mapillary.com/dataset/vistas]
    12. Microsoft AirSim[https://github.com/Microsoft/AirSim]
    13. MIT Scene Parsing Benchmark[http://sceneparsing.csail.mit.edu/]
    14. COCO 2017 Stuff Segmentation Challenge[http://cocodataset.org/#stuff-challenge2017]
    15. ADE20K Dataset[http://groups.csail.mit.edu/vision/datasets/ADE20K/]
    16. INRIA Annotations for Graz-02[http://lear.inrialpes.fr/people/marszalek/data/ig02/]

比赛

  1. MSRC-21 [http://rodrigob.github.io/are_we_there_yet/build/semantic_labeling_datasets_results.html]
  2. Cityscapes [https://www.cityscapes-dataset.com/benchmarks/]
  3. VOC2012 [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]

领域专家

  1. Jonathan Long
    • [http://people.eecs.berkeley.edu/~jonlong/\]
  2. Liang-Chieh Chen
    • [http://liangchiehchen.com/]
  3. Hyeonwoo Noh
    • [http://cvlab.postech.ac.kr/~hyeonwoonoh/\]
  4. Bharath Hariharan
    • [http://home.bharathh.info/]
  5. Fisher Yu
    • [http://www.yf.io/]
  6. Vijay Badrinarayanan
    • [https://sites.google.com/site/vijaybacademichomepage/home/papers]
  7. Guosheng Lin
    • [https://sites.google.com/site/guoshenglin/]

本文分享自微信公众号 - 专知(Quan_Zhuanzhi),作者:专知内容组

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-11-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • AI与深度学习重点回顾:Denny Britz眼中的2017

    【导读】近日,博客WILDML的作者Denny Britz把他眼中的2017年AI和深度学习的大事进行了一番梳理和总结:从AlphaGo的自主学习到AlphaG...

    WZEARW
  • 【专知荟萃22】机器阅读理解RC知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

    机器阅读理解(Reading Comprehension)专知荟萃 入门学习 进阶论文 综述 Datasets Code 领域专家 入门学习 深度学习解决机器阅...

    WZEARW
  • 【专知荟萃25】文字识别OCR知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

    OCR文字,车牌,验证码识别 专知荟萃 入门学习 论文及代码 文字识别 文字检测 验证码破解 手写体识别 车牌识别 实战项目 视频 入门学习 端到端的OCR...

    WZEARW
  • Wiki | Red Team攻击思维

    一个 Red Team 攻击的生命周期,整个生命周期包括: 信息收集、攻击尝试获得权限、持久性控制、权限提升、网络信息收集、横向移动、数据分析(在这个基础上再做...

    HACK学习
  • Python | Github 收藏夹(#week04)

    PyStaData
  • 推荐一些优秀的甲方安全开源项目

    这是一份甲方安全开源项目清单,收集了一些比较优秀的安全开源项目,以帮助甲方安全从业人员构建企业安全能力。这些开源项目,每一个都在致力于解决一些安全问题。

    Bypass
  • 支付宝 Android 版使用的开源组件

    开发者技术前线
  • 盘点 Shiny 中的各种主题和 UI 插件

    •shinythemes https://github.com/rstudio/shinythemes - 在 Shiny 中 使用 Bootswatch 主题...

    王诗翔呀
  • 盘点 Shiny 中的各种主题和 UI 插件

    •shinythemes https://github.com/rstudio/shinythemes - 在 Shiny 中 使用 Bootswatch 主题...

    生信菜鸟团
  • Github上收集了70个微信小程序源码

    1:仿豆瓣电影微信小程序 https://github.com/zce/weapp-demo

    王小婷

扫码关注云+社区

领取腾讯云代金券