【专知荟萃20】图像分割Image Segmentation知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

  • 图像分割 (Image Segmentation) 专知荟萃
    • 入门学习
    • 进阶论文
    • 综述
    • Tutorial
    • 视频教程
    • 代码
    • Semantic segmentation
    • Instance aware segmentation
    • Satellite images segmentation
    • Video segmentation
    • Autonomous driving
    • Annotation Tools:
    • Datasets
    • 比赛
    • 领域专家

入门学习

  1. A 2017 Guide to Semantic Segmentation with Deep Learning 概述——用深度学习做语义分割
    • [http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]
    • 中文翻译:[http://simonduan.site/2017/07/23/notes-semantic-segmentation-deep-learning-review/]
  2. 从全卷积网络到大型卷积核:深度学习的语义分割全指南
    • [https://www.jiqizhixin.com/articles/2017-07-14-10]
  3. Fully Convolutional Networks
    • [http://simtalk.cn/2016/11/01/Fully-Convolutional-Networks/]
  4. 语义分割中的深度学习方法全解:从FCN、SegNet到各代DeepLab
    • [https://zhuanlan.zhihu.com/p/27794982]
  5. 图像语义分割之FCN和CRF
    • [https://zhuanlan.zhihu.com/p/22308032]
  6. 从特斯拉到计算机视觉之「图像语义分割」
    • [http://www.52cs.org/?p=1089]
  7. 计算机视觉之语义分割
    • [http://blog.geohey.com/ji-suan-ji-shi-jue-zhi-yu-yi-fen-ge/]
  8. Segmentation Results: VOC2012 PASCAL语义分割比赛排名
    • [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]

进阶论文

  1. U-Net [https://arxiv.org/pdf/1505.04597.pdf]
  2. SegNet [https://arxiv.org/pdf/1511.00561.pdf]
  3. DeepLab [https://arxiv.org/pdf/1606.00915.pdf]
  4. FCN [https://arxiv.org/pdf/1605.06211.pdf]
  5. ENet [https://arxiv.org/pdf/1606.02147.pdf]
  6. LinkNet [https://arxiv.org/pdf/1707.03718.pdf]
  7. DenseNet [https://arxiv.org/pdf/1608.06993.pdf]
  8. Tiramisu [https://arxiv.org/pdf/1611.09326.pdf]
  9. DilatedNet [https://arxiv.org/pdf/1511.07122.pdf]
  10. PixelNet [https://arxiv.org/pdf/1609.06694.pdf]
  11. ICNet [https://arxiv.org/pdf/1704.08545.pdf]
  12. ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf]
  13. RefineNet [https://arxiv.org/pdf/1611.06612.pdf]
  14. PSPNet [https://arxiv.org/pdf/1612.01105.pdf]
  15. CRFasRNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]
  16. Dilated convolution [https://arxiv.org/pdf/1511.07122.pdf]
  17. DeconvNet [https://arxiv.org/pdf/1505.04366.pdf]
  18. FRRN [https://arxiv.org/pdf/1611.08323.pdf]
  19. GCN [https://arxiv.org/pdf/1703.02719.pdf]
  20. DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf]
  21. Segaware [https://arxiv.org/pdf/1708.04607.pdf]
  22. Semantic Segmentation using Adversarial Networks [https://arxiv.org/pdf/1611.08408.pdf]

综述

  1. A Review on Deep Learning Techniques Applied to Semantic Segmentation Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Jose Garcia-Rodriguez 2017
    • [https://arxiv.org/abs/1704.06857]
  2. Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
    • [https://arxiv.org/abs/1704.05519]
  3. 基于内容的图像分割方法综述 姜 枫 顾 庆 郝慧珍 李 娜 郭延文 陈道蓄 2017
    • [http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=5136&journal_id=jos\]

Tutorial

  1. Semantic Image Segmentation with Deep Learning
    • [http://www.robots.ox.ac.uk/~sadeep/files/crfasrnn_presentation.pdf\]
  2. A 2017 Guide to Semantic Segmentation with Deep Learning
    • [http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]
  3. Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
    • [http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/]

视频教程

  1. CS231n: Convolutional Neural Networks for Visual Recognition Lecture 11 Detection and Segmentation
    • [http://cs231n.stanford.edu/syllabus.html]
  2. Machine Learning for Semantic Segmentation - Basics of Modern Image Analysis
    • [https://www.youtube.com/watch?v=psLChcm8aiU]

代码

Semantic segmentation

  1. U-Net (https://arxiv.org/pdf/1505.04597.pdf)
    • https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (Caffe - Matlab)
    • https://github.com/jocicmarko/ultrasound-nerve-segmentation (Keras)
    • https://github.com/EdwardTyantov/ultrasound-nerve-segmentation (Keras)
    • https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model (Keras)
    • https://github.com/yihui-he/u-net (Keras)
    • https://github.com/jakeret/tf_unet (Tensorflow)
    • https://github.com/DLTK/DLTK/blob/master/examples/Toy_segmentation/simple_dltk_unet.ipynb (Tensorflow)
    • https://github.com/divamgupta/image-segmentation-keras (Keras)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/akirasosa/mobile-semantic-segmentation (Keras)
    • https://github.com/orobix/retina-unet (Keras)
  2. SegNet (https://arxiv.org/pdf/1511.00561.pdf)
    • https://github.com/alexgkendall/caffe-segnet (Caffe)
    • https://github.com/developmentseed/caffe/tree/segnet-multi-gpu (Caffe)
    • https://github.com/preddy5/segnet (Keras)
    • https://github.com/imlab-uiip/keras-segnet (Keras)
    • https://github.com/andreaazzini/segnet (Tensorflow)
    • https://github.com/fedor-chervinskii/segnet-torch (Torch)
    • https://github.com/0bserver07/Keras-SegNet-Basic (Keras)
    • https://github.com/tkuanlun350/Tensorflow-SegNet (Tensorflow)
    • https://github.com/divamgupta/image-segmentation-keras (Keras)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/chainer/chainercv/tree/master/examples/segnet (Chainer)
    • https://github.com/ykamikawa/keras-SegNet (Keras)
  3. DeepLab (https://arxiv.org/pdf/1606.00915.pdf)
    • https://bitbucket.org/deeplab/deeplab-public/ (Caffe)
    • https://github.com/cdmh/deeplab-public (Caffe)
    • https://bitbucket.org/aquariusjay/deeplab-public-ver2 (Caffe)
    • https://github.com/TheLegendAli/DeepLab-Context (Caffe)
    • https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab (MXNet)
    • https://github.com/DrSleep/tensorflow-deeplab-resnet (Tensorflow)
    • https://github.com/muyang0320/tensorflow-deeplab-resnet-crf (TensorFlow)
    • https://github.com/isht7/pytorch-deeplab-resnet (PyTorch)
    • https://github.com/bermanmaxim/jaccardSegment (PyTorch)
    • https://github.com/martinkersner/train-DeepLab (Caffe)
    • https://github.com/chenxi116/TF-deeplab (Tensorflow)
  4. FCN (https://arxiv.org/pdf/1605.06211.pdf)
    • https://github.com/vlfeat/matconvnet-fcn (MatConvNet)
    • https://github.com/shelhamer/fcn.berkeleyvision.org (Caffe)
    • https://github.com/MarvinTeichmann/tensorflow-fcn (Tensorflow)
    • https://github.com/aurora95/Keras-FCN (Keras)
    • https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras (Keras)
    • https://github.com/k3nt0w/FCN_via_keras (Keras)
    • https://github.com/shekkizh/FCN.tensorflow (Tensorflow)
    • https://github.com/seewalker/tf-pixelwise (Tensorflow)
    • https://github.com/divamgupta/image-segmentation-keras (Keras)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/wkentaro/pytorch-fcn (PyTorch)
    • https://github.com/wkentaro/fcn (Chainer)
    • https://github.com/apache/incubator-mxnet/tree/master/example/fcn-xs (MxNet)
    • https://github.com/muyang0320/tf-fcn (Tensorflow)
    • https://github.com/ycszen/pytorch-seg (PyTorch)
    • https://github.com/Kaixhin/FCN-semantic-segmentation (PyTorch)
  5. ENet (https://arxiv.org/pdf/1606.02147.pdf)
    • https://github.com/TimoSaemann/ENet (Caffe)
    • https://github.com/e-lab/ENet-training (Torch)
    • https://github.com/PavlosMelissinos/enet-keras (Keras)
  6. LinkNet (https://arxiv.org/pdf/1707.03718.pdf)
    • https://github.com/e-lab/LinkNet (Torch)
  7. DenseNet (https://arxiv.org/pdf/1608.06993.pdf)
    • https://github.com/flyyufelix/DenseNet-Keras (Keras)
  8. Tiramisu (https://arxiv.org/pdf/1611.09326.pdf)
    • https://github.com/0bserver07/One-Hundred-Layers-Tiramisu (Keras)
    • https://github.com/SimJeg/FC-DenseNet (Lasagne)
  9. DilatedNet (https://arxiv.org/pdf/1511.07122.pdf)
    • https://github.com/nicolov/segmentation_keras (Keras)
  10. PixelNet (https://arxiv.org/pdf/1609.06694.pdf)
    • https://github.com/aayushbansal/PixelNet (Caffe)
  11. ICNet (https://arxiv.org/pdf/1704.08545.pdf)
    • https://github.com/hszhao/ICNet (Caffe)
  12. ERFNet (http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf)
    • https://github.com/Eromera/erfnet (Torch)
  13. RefineNet (https://arxiv.org/pdf/1611.06612.pdf)
    • https://github.com/guosheng/refinenet (MatConvNet)
  14. PSPNet (https://arxiv.org/pdf/1612.01105.pdf)
    • https://github.com/hszhao/PSPNet (Caffe)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/mitmul/chainer-pspnet (Chainer)
    • https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow (Keras/Tensorflow)
    • https://github.com/pudae/tensorflow-pspnet (Tensorflow)
  15. CRFasRNN (http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf)
    • https://github.com/torrvision/crfasrnn (Caffe)
    • https://github.com/sadeepj/crfasrnn_keras (Keras)
  16. Dilated convolution (https://arxiv.org/pdf/1511.07122.pdf)
    • https://github.com/fyu/dilation (Caffe)
    • https://github.com/fyu/drn#semantic-image-segmentataion (PyTorch)
    • https://github.com/hangzhaomit/semantic-segmentation-pytorch (PyTorch)
  17. DeconvNet (https://arxiv.org/pdf/1505.04366.pdf)
    • http://cvlab.postech.ac.kr/research/deconvnet/ (Caffe)
    • https://github.com/HyeonwooNoh/DeconvNet (Caffe)
    • https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation (Tensorflow)
  18. FRRN (https://arxiv.org/pdf/1611.08323.pdf)
    • https://github.com/TobyPDE/FRRN (Lasagne)
  19. GCN (https://arxiv.org/pdf/1703.02719.pdf)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/ycszen/pytorch-seg (PyTorch)
  20. DUC, HDC (https://arxiv.org/pdf/1702.08502.pdf)
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
    • https://github.com/ycszen/pytorch-seg (PyTorch)
  21. Segaware (https://arxiv.org/pdf/1708.04607.pdf)
    • https://github.com/aharley/segaware (Caffe)
  22. Semantic Segmentation using Adversarial Networks (https://arxiv.org/pdf/1611.08408.pdf)
    • https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks (Chainer)

Instance aware segmentation

  1. FCIS [https://arxiv.org/pdf/1611.07709.pdf]
    • https://github.com/msracver/FCIS [MxNet]
  2. MNC [https://arxiv.org/pdf/1512.04412.pdf]
    • https://github.com/daijifeng001/MNC [Caffe]
  3. DeepMask [https://arxiv.org/pdf/1506.06204.pdf]
    • https://github.com/facebookresearch/deepmask [Torch]
  4. SharpMask [https://arxiv.org/pdf/1603.08695.pdf]
    • https://github.com/facebookresearch/deepmask [Torch]
  5. Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]
    • https://github.com/CharlesShang/FastMaskRCNN [Tensorflow]
    • https://github.com/TuSimple/mx-maskrcnn [MxNet]
    • https://github.com/matterport/Mask_RCNN [Keras]
    1. https://github.com/jasjeetIM/Mask-RCNN [Caffe]
  6. RIS [https://arxiv.org/pdf/1511.08250.pdf]
    • https://github.com/bernard24/RIS [Torch]
  7. FastMask [https://arxiv.org/pdf/1612.08843.pdf]
    • https://github.com/voidrank/FastMask [Caffe]

Satellite images segmentation

  • https://github.com/mshivaprakash/sat-seg-thesis
  • https://github.com/KGPML/Hyperspectral
  • https://github.com/lopuhin/kaggle-dstl
  • https://github.com/mitmul/ssai
  • https://github.com/mitmul/ssai-cnn
  • https://github.com/azavea/raster-vision
  • https://github.com/nshaud/DeepNetsForEO
  • https://github.com/trailbehind/DeepOSM

Video segmentation

  • https://github.com/shelhamer/clockwork-fcn
  • https://github.com/JingchunCheng/Seg-with-SPN

Autonomous driving

  • https://github.com/MarvinTeichmann/MultiNet
  • https://github.com/MarvinTeichmann/KittiSeg
  • https://github.com/vxy10/p5_VehicleDetection_Unet [Keras]
  • https://github.com/ndrplz/self-driving-car
  • https://github.com/mvirgo/MLND-Capstone

Annotation Tools:

  • https://github.com/AKSHAYUBHAT/ImageSegmentation
  • https://github.com/kyamagu/js-segment-annotator
  • https://github.com/CSAILVision/LabelMeAnnotationTool
  • https://github.com/seanbell/opensurfaces-segmentation-ui
  • https://github.com/lzx1413/labelImgPlus
  • https://github.com/wkentaro/labelme

Datasets

  1. Stanford Background Dataset[http://dags.stanford.edu/projects/scenedataset.html]
    1. Sift Flow Dataset[http://people.csail.mit.edu/celiu/SIFTflow/]
    2. Barcelona Dataset[http://www.cs.unc.edu/~jtighe/Papers/ECCV10/]
    3. Microsoft COCO dataset[http://mscoco.org/]
    4. MSRC Dataset[http://research.microsoft.com/en-us/projects/objectclassrecognition/]
    5. LITS Liver Tumor Segmentation Dataset[https://competitions.codalab.org/competitions/15595]
    6. KITTI[http://www.cvlibs.net/datasets/kitti/eval_road.php]
    7. Stanford background dataset[http://dags.stanford.edu/projects/scenedataset.html]
    8. Data from Games dataset[https://download.visinf.tu-darmstadt.de/data/from_games/]
    9. Human parsing dataset[https://github.com/lemondan/HumanParsing-Dataset]
    10. Silenko person database[https://github.com/Maxfashko/CamVid]
    11. Mapillary Vistas Dataset[https://www.mapillary.com/dataset/vistas]
    12. Microsoft AirSim[https://github.com/Microsoft/AirSim]
    13. MIT Scene Parsing Benchmark[http://sceneparsing.csail.mit.edu/]
    14. COCO 2017 Stuff Segmentation Challenge[http://cocodataset.org/#stuff-challenge2017]
    15. ADE20K Dataset[http://groups.csail.mit.edu/vision/datasets/ADE20K/]
    16. INRIA Annotations for Graz-02[http://lear.inrialpes.fr/people/marszalek/data/ig02/]

比赛

  1. MSRC-21 [http://rodrigob.github.io/are_we_there_yet/build/semantic_labeling_datasets_results.html]
  2. Cityscapes [https://www.cityscapes-dataset.com/benchmarks/]
  3. VOC2012 [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]

领域专家

  1. Jonathan Long
    • [http://people.eecs.berkeley.edu/~jonlong/\]
  2. Liang-Chieh Chen
    • [http://liangchiehchen.com/]
  3. Hyeonwoo Noh
    • [http://cvlab.postech.ac.kr/~hyeonwoonoh/\]
  4. Bharath Hariharan
    • [http://home.bharathh.info/]
  5. Fisher Yu
    • [http://www.yf.io/]
  6. Vijay Badrinarayanan
    • [https://sites.google.com/site/vijaybacademichomepage/home/papers]
  7. Guosheng Lin
    • [https://sites.google.com/site/guoshenglin/]

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2017-11-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【论文推荐】最新6篇目标跟踪相关论文—动态记忆网络、相关滤波器、单次学习、相关、循环自回归网络、三维多目标

【导读】专知内容组整理了最近六篇目标跟踪(Object Tracking)相关文章,为大家进行介绍,欢迎查看! 1.Learning Dynamic Memor...

49370
来自专栏专知

【专知荟萃25】文字识别OCR知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

OCR文字,车牌,验证码识别 专知荟萃 入门学习 论文及代码 文字识别 文字检测 验证码破解 手写体识别 车牌识别 实战项目 视频 入门学习 端到端的OCR...

2.1K80
来自专栏贾志刚-OpenCV学堂

图像处理开发者必读

小编作为一个图像与计算机视觉的开发者,总结了一下作为图像处理开发工程师应该知道或者掌握的图像处理知识点。跟大家分享一下,以备大家学习方便。 图像像素操作 -...

31450
来自专栏AI研习社

基于深度学习的医疗影像论文汇总(Deep Learning Papers on Medical Image Analysis)

看到好东西,怎么能不分享呢。 第一次在知乎翻译,由于水平有限(不是谦虚的那种有限,是真的有限),有不准确的地方还望包涵,最重要的是,还望大佬们多多指正! B...

92480
来自专栏专知

【论文推荐】最新6篇图像分割相关论文—隐马尔可夫随机场、级联三维全卷积、信号处理、全卷积网络、多源域适应、循环分割

【导读】专知内容组整理了最近六篇图像分割(Image Segmentation)相关文章,为大家进行介绍,欢迎查看! 1.Combination of Hidd...

41660
来自专栏专知

【论文推荐】最新六篇图像分割相关论文—控制、全卷积网络、子空间表示、多模态图像分割

【导读】专知内容组整理了最近六篇图像分割(Image Segmentation)相关文章,为大家进行介绍,欢迎查看! 1.Virtual-to-Real: Le...

46150
来自专栏专知

【论文推荐】最新6篇目标检测相关论文—场景文本检测 、显著对象、语义知识转移、混合监督目标检测、域自适应、车牌识别

【导读】专知内容组整理了最近六篇目标检测(Object Detection)相关文章,为大家进行介绍,欢迎查看! 1. Rotation-Sensitive R...

69060
来自专栏专知

【论文推荐】最新6篇卷积神经网络相关论文—多任务学习、SAR和光学图像、动态加权排列、去雾新方法、点CNN、肿瘤生长预测

【导读】专知内容组整理了最近六篇卷积神经网络(CNN)相关文章,为大家进行介绍,欢迎查看! 1. NDDR-CNN: Layer-wise Feature Fu...

85350
来自专栏专知

【论文推荐】最新五篇度量学习相关论文—无标签、三维姿态估计、主动度量学习、深度度量学习、层次度量学习与匹配

【导读】专知内容组整理了最近五篇度量学习(Metric Learning )相关文章,为大家进行介绍,欢迎查看! 1.Mining on Manifolds: ...

39830
来自专栏大学生计算机视觉学习DeepLearning

深度学习(四)转--入门深度学习的一些开源代码

没错这篇又是转发的,因为觉得学习深度学习难免要从别人的代码开始,所以就转发了。不过转发的时候没找到原作者是谁,所以原作者看到不要打我-------QAQ

17040

扫码关注云+社区

领取腾讯云代金券