【专知荟萃23】深度强化学习RL知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

【AlphaGoZero核心技术】深度强化学习专知荟萃

  • 【AlphaGoZero核心技术】深度强化学习专知荟萃
    • 基础入门
    • 进阶文章
      • Papers
      • Papers for NLP
    • Tutorials
    • 中英文综述
    • 视频教程
    • 代码
    • 博客
    • 领域专家

基础入门

1.Reinforcement learning wiki [https://en.wikipedia.org/wiki/Reinforcement_learning]

2.Deep Reinforcement Learning: Pong from Pixels [http://karpathy.github.io/2016/05/31/rl/]

3.CS 294: Deep Reinforcement Learning [http://rll.berkeley.edu/deeprlcourse/]

4.什么是强化学习? [http://www.cnblogs.com/geniferology/p/what_is_reinforcement_learning.html]

5.强化学习系列之一:马尔科夫决策过程 [http://www.algorithmdog.com/%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0-%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E5%86%B3%E7%AD%96%E8%BF%87%E7%A8%8B]

6.强化学习系列之三:模型无关的策略评价 [http://www.algorithmdog.com/reinforcement-learning-model-free-evalution]

7.强化学习系列之九:Deep Q Network (DQN) [http://www.algorithmdog.com/drl]

8.【整理】强化学习与MDP [http://www.cnblogs.com/mo-wang/p/4910855.html]

9.强化学习入门及其实现代码 [http://www.jianshu.com/p/165607eaa4f9]

10.David视频里所使用的讲义pdf [https://pan.baidu.com/s/1nvqP7dB]

11.强化学习简介——南京大学俞扬 [https://www.jianguoyun.com/p/DVSE-5AQ5oLtBRiKmis]

12.DavidSilver? 关于 深度确定策略梯度 DPG的论文 [http://www.jmlr.org/proceedings/papers/v32/silver14.pdf]

13.Nature 上关于深度 Q 网络 (DQN) 论文:" [http://www.nature.com/articles/nature14236]

14.【教程实战】Google DeepMind David Silver《深度强化学习》公开课教程学习笔记以及实战代码完整版 [http://mp.weixin.qq.com/s/y1aa_nIimSv4wlprGFHR7g]

进阶文章

Papers

1.Mastering the Game of Go without Human Knowledge [https://deepmind.com/documents/119/agz_unformatted_nature.pdf]

2.Mastering the game of Go with deep neural networks and tree search [http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html]

3.Human level control with deep reinforcement learning [http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html]

4.Play Atari game with deep reinforcement learning [https://www.cs.toronto.edu/%7Evmnih/docs/dqn.pdf]

5.Prioritized experience replay [https://arxiv.org/pdf/1511.05952v2.pdf]

6.Dueling DQN [https://arxiv.org/pdf/1511.06581v3.pdf]

7.Deep reinforcement learning with double Q Learning [https://arxiv.org/abs/1509.06461 ]

8.Deep Q learning with NAF [https://arxiv.org/pdf/1603.00748v1.pdf]

9.Deterministic policy gradient [http://jmlr.org/proceedings/papers/v32/silver14.pdf]

10.Continuous control with deep reinforcement learning) (DDPG) [https://arxiv.org/pdf/1509.02971v5.pdf]

11.Asynchronous Methods for Deep Reinforcement Learning [https://arxiv.org/abs/1602.01783]

12.Policy distillation [https://arxiv.org/abs/1511.06295]

13.Unifying Count-Based Exploration and Intrinsic Motivation [https://arxiv.org/pdf/1606.01868v2.pdf]

14.Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models [https://arxiv.org/pdf/1507.00814v3.pdf]

15.Action-Conditional Video Prediction using Deep Networks in Atari Games [https://arxiv.org/pdf/1507.08750v2.pdf]

16."Control of Memory, Active Perception, and Action in Minecraft" [https://web.eecs.umich.edu/~baveja/Papers/ICML2016.pdf]

17.PathNet [https://arxiv.org/pdf/1701.08734.pdf]

Papers for NLP

1.Coarse-to-Fine Question Answering for Long Documents [https://homes.cs.washington.edu/~eunsol/papers/acl17eunsol.pdf]

2.A Deep Reinforced Model for Abstractive Summarization [https://arxiv.org/pdf/1705.04304.pdf]

3.Reinforcement Learning for Simultaneous Machine Translation [https://www.umiacs.umd.edu/~jbg/docs/2014_emnlp_simtrans.pdf]

4.Dual Learning for Machine Translation [https://papers.nips.cc/paper/6469-dual-learning-for-machine-translation.pdf]

5.Learning to Win by Reading Manuals in a Monte-Carlo Framework [http://people.csail.mit.edu/regina/my_papers/civ11.pdf]

6.Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning [http://people.csail.mit.edu/regina/my_papers/civ11.pdf]

7.Deep Reinforcement Learning with a Natural Language Action Space [http://www.aclweb.org/anthology/P16-1153]

8.Deep Reinforcement Learning for Dialogue Generation [https://arxiv.org/pdf/1606.01541.pdf]

9.Reinforcement Learning for Mapping Instructions to Actions [http://people.csail.mit.edu/branavan/papers/acl2009.pdf]

10.Language Understanding for Text-based Games using Deep Reinforcement Learning [https://arxiv.org/pdf/1506.08941.pdf]

11.End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning [https://arxiv.org/pdf/1606.01269v1.pdf]

12.End-to-End Reinforcement Learning of Dialogue Agents for Information Access [https://arxiv.org/pdf/1609.00777v1.pdf]

13.Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning [https://arxiv.org/pdf/1702.03274.pdf]

14.Deep Reinforcement Learning for Mention-Ranking Coreference Models [https://arxiv.org/abs/1609.08667]

Tutorials

  1. Reinforcement Learning for NLP
    • [http://www.umiacs.umd.edu/~jbg/teaching/CSCI_7000/11a.pdf]
  2. David Silver ICML2016 Tutorial: Deep Reinforcement Learning
    • [http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf ]
  3. David Silver ICML2016 Tutorial: Deep Reinforcement Learning 中文讲稿
  4. DQN tutorial
    • [https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-4-deep-q-networks-and-beyond-8438a3e2b8df#.28wv34w3a]
  5. 强化学习简介——南京大学俞扬(PDF)
    • [https://www.jianguoyun.com/p/DVSE-5AQ5oLtBRiKmis]

中英文综述

  1. 深度强化学习综述:兼论计算机围棋的发展
    • [https://wenku.baidu.com/view/539025f99fc3d5bbfd0a79563c1ec5da50e2d684.html]
  2. 深度强化学习综述- 计算机学报
    • [https://wenku.baidu.com/view/772ea6e5ab00b52acfc789eb172ded630a1c9852.html]
  3. 深度强化学习综述:从AlphaGo背后的力量到学习资源分享| 机器之心
    • [https://zhuanlan.zhihu.com/p/25037206]
  4. 英文最新综述 DEEP REINFORCEMENT LEARNING: AN OVERVIEW
    • [https://arxiv.org/pdf/1701.07274.pdf]

视频教程

1.David Silver的这套视频公开课(Youtube) [https://www.youtube.com/watch?v=2pWv7GOvuf0&ampampampampamplist=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT;]

2.David Silver的这套视频公开课(Youku) [http://www.bilibili.com/video/av9831889/?from=search&seid=17387316110198388304?]

3.David Silver的这套视频公开课(Bilibili) [http://www.bilibili.com/video/av9831889/?from=search&seid=17387316110198388304?]

4.强化学习课程 by David Silver [https://www.bilibili.com/video/av8912293/?from=search&seid=1166472326542614796]

5.CS234: Reinforcement Learning [http://web.stanford.edu/class/cs234/index.html]

6.什么是强化学习? (Reinforcement Learning) [https://www.youtube.com/watch?v=NVWBs7b3oGk]

7.什么是 Q Learning (Reinforcement Learning 强化学习) [https://www.youtube.com/watch?v=HTZ5xn12AL4]

8.Deep Reinforcement Learning [http://videolectures.net/rldm2015_silver_reinforcement_learning/]

9.强化学习教程(莫烦) [https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/]

10.David Silver ICML2016 Tutorial: Deep Reinforcement Learning 视频 [http://techtalks.tv/talks/deep-reinforcement-learning/62360/]

代码

1.OpenAI Gym [https://github.com/openai/gym]

2.GoogleDeep Mind 团队深度 Q 网络 (DQN) 源码: [http://sites.google.com/a/deepmind.com/dqn/]

3.ReinforcementLearningCode [https://github.com/halleanwoo/ReinforcementLearningCode]

4.reinforcement-learning [https://github.com/dennybritz/reinforcement-learning]

5.DQN [https://github.com/devsisters/DQN-tensorflow]

6.DDPG [https://github.com/stevenpjg/ddpg-aigym]

7.A3C01 [https://github.com/miyosuda/async_deep_reinforce]

8.A3C02 [https://github.com/openai/universe-starter-agent]

博客

1.Play pong with deep reinforcement learning based on pixel [http://karpathy.github.io/2016/05/31/rl/]

2."What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?" [https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/]

3.Deep Learning in a Nutshell: Reinforcement Learning [https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-reinforcement-learning/]

4.南京大学俞扬博士万字演讲全文:强化学习前沿 [https://www.leiphone.com/news/201705/NlTc7oObBqh116Z5.html]

5.Nature 上关于 AlphaGo 的论文 [http://www.nature.com/articles/nature16961]

6.AlphaGo 相关的资源 [https://deepmind.com/research/alphago/]

7.Reinforcement Learning(RL) for Natural Language Processing(NLP) [https://github.com/adityathakker/awesome-rl-nlp]

领域专家

  1. 加州大学伯克利分校机器人学专家 Sergey Levine
    • [https://people.eecs.berkeley.edu/~svlevine/]
  2. 前百度首席科学家 Andrew Ng
    • [http://www.andrewng.org/]
  3. 加拿大阿尔伯塔大学著名增强学习大师Richard S. Sutton 教授
    • [https://www.amii.ca/sutton/]
  4. Google DeepMind AlphaGo项目的主程序员 David Silver 博士
    • [http://www0.cs.ucl.ac.uk/staff/d.silver/web/Home.html]

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2017-11-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得...

1.5K14
来自专栏量子位

18种热门GAN的PyTorch开源代码 | 附论文地址

有GitHub小伙伴提供了前人的肩膀供你站上去。TA汇总了18种热门GAN的PyTorch实现,还列出了每一种GAN的论文地址,可谓良心资源。

2182
来自专栏专知

【论文推荐】最新八篇知识图谱相关论文—神经信息检索、可解释推理网络、Zero-Shot、上下文、Attentive RNN

【导读】专知内容组今天为大家推出八篇知识图谱(Knowledge Graph)相关论文,欢迎查看!

3403
来自专栏专知

【论文推荐】最新八篇推荐系统相关论文—可解释推荐、上下文感知推荐系统、异构知识库嵌入、深度强化学习、移动推荐系统

【导读】专知内容组既昨天推出八篇推荐系统相关论文之后,今天为大家又推出八篇推荐系统(Recommendation System)相关论文,欢迎查看!

5133
来自专栏专知

【论文推荐】最新六篇视频分类相关论文—教师学生网络、表观-关系、Charades-Ego、视觉数据合成、图蒸馏、细粒度视频分类

【导读】专知内容组为大家推出最新六篇视频分类(Video Classification)相关论文,欢迎查看!

1313
来自专栏专知

【AlphaGoZero核心技术】深度强化学习知识资料全集(论文/代码/教程/视频/文章等)

【导读】昨天 Google DeepMind在Nature上发表最新论文,介绍了迄今最强最新的版本AlphaGo Zero,不使用人类先验知识,使用纯强化学习,...

3454
来自专栏CVer

人工智能 | 中国计算机学会推荐国际学术刊物/会议

关注CVer公众号的群体大多以学生为主,特别是研究生。相信在帮boss做事的时候,论文也是核心工作。Amusi平时爱推送一些论文速递,但这么多论文,怎么快速区分...

1741
来自专栏AI研习社

126篇殿堂级深度学习论文分类整理 从入门到应用(上)

█ 如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步。而作为新人,你的第一个问题或许是:“论文那么多,从哪一篇读起?”...

3598
来自专栏新智元

ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)

【新智元导读】ICLR 2017 将于2017年4月24日至26日在法国土伦(toulon)举行,11月4日已经停止接收论文。本文汇总了本年度NLP、无监督学习...

47610
来自专栏专知

【论文推荐】最新八篇视频描述生成相关论文—在线视频理解、联合定位和描述事件、生成视频、跨模态注意力机制、联合事件检测和描述

【导读】专知内容组整理近期八篇视频描述生成(Video Captioning)相关文章,为大家进行介绍,欢迎查看!

2015

扫码关注云+社区

领取腾讯云代金券