python爬虫——分析天猫iphonX的销售数据

01.引言

  这篇文章是我最近刚做的一个项目,会带领大家使用多种技术实现一个非常有趣的项目,该项目是关于苹果机(iphoneX)的销售数据分析,是网络爬虫和数据分析的综合应用项目。本项目会分别从天猫和京东抓取iphoneX的销售数据(利用 Chrome 工具跟踪 Web 数据),并将这些数据保存到 Mysql 数据库中,然后对数据进行清洗,最后通过 SQL 语句、Pandas 和 Matplotlib 对数据进行数据可视化分析。我们从分析结果中可以得出很多有趣的结果,例如,大家最爱买的颜色是,最喜欢的是多少G内存的iphoneX等等,当然本文介绍的只是一个小的应用,时间够的话如果大家刚兴趣可以进一步进行推广。

  废话不多说,马上开始。

02.分析

  首先从马云粑粑的天猫“取“点数据,取数据的第一步即使要分析一下 Web 页面中数据是如何来的。也就是说数据,数据是通过何种方式发送到客户端浏览器的。天猫和京东的数据基本上没采用什么有意义的反爬技术,所以抓取数据相对比较容易(针对于复杂的后期会介绍抓包工具以及Scrapy框架自动爬取的方式)。

  进到天猫苹果的官方旗舰店后,开始使用 Chrome 浏览器或者火狐都可以,他们都有很方便的调试工具。开始搜索”iphoneX“关键字,然后页面就会弹出iphoneX的商品详情页,浏览商品页面,在页面的右键菜单中点击“检查”菜单项,打开调试窗口,切换到“Network”选项卡,这个选项卡可以实时显示出当前页面向服务端发送的所有请求,以及这些请求的请求头、响应头、响应内容以及其他与调试有关的信息。对于调试和跟踪 Web 应用相当方便。

  打开“Network”选项卡后,进到商品评论处,切换到下一页,会看到“Network”选项卡下方出现很多 URL,这就是切换评论页时向服务端新发出的请求。我们要找的东西就在这些 URL 中。至于如何找到具体的 URL,那就要依靠经验了。可以一个一个点击寻找(在右侧的“Preview”选项卡中显示 URL 的响应内容),也可以根据 URL 名判断,一般程序员不会起无意义的名字,这样很不好维护。这里我们找到一个”list_detail_rate.htm?“的URL,点开后,我们发现如图1所示,ratelist中的信息正是一条条的评论信息,所以也正是我们需要的Url。

然后右键选中左边”list_detail_rate.htm?“选择保存URL地址,然后用浏览器打开,可以看到如图2所示的内容。

  这个 URL 就是iphoneX的某一页的评论(销售)数据,如果要查询所有的评论数据,就需要动态改变 URL 的参数。下面看一下“Headers”选项卡下面的“Query String Parameters”部分,如图3所示,会清楚地了解该 URL 的具体参数值。

  在这些参数中有一部分对我们有用,例如,itemId 表示商品 ID,currentPage 表示当前获取的评论页数,在通过爬虫获取这些评论数据时,需要不断改变这些参数值以获取不同的评论数据。

尽管根据评论数计算(每页20条评论),某些商品的评论页数可能多达数百页,甚至上千页。

03.抓取天猫iphoneX的销售数据

  因为本项目抓取指定商品销售数据需要使用 JSON 模块中相应的 API 进行分析,因为返回的销售数据是 JSON 格式的,而从搜索页面抓取的商品列表需要分析 HTML 代码,这里我使用urllib模块。在对数据进行分析整理后,需要将数据保存到 Mysql 数据库中,因此,本例还会使用 mysql.connector 模块,本例使用的其他模块还包括 re正则模块和urllib.error异常处理模块,所以需要在 Python 脚本开头使用下面的代码导入相关模块。

import urllib
import mysql.connector
import re
import urllib.error

  使用 request 方法发送 HTTP 请求时,可以使用 decode() 函数对 GET 字段进行编码。

data=urllib.request.urlopen(url).read().decode('GB18030')

  然后,可以利用正则表达式对data数据进行正则匹配,这里就不仔细描述了,代码如下;

for currentPage in range(1,100):
    try:
        commt_url='https://rate.tmall.com/list_detail_rate.htm?itemId=560257961625&spuId=893336129&sellerId=1917047079&order=3&currentPage='+str(currentPage)+'&append=0&content=1&tagId=&posi=&picture=&'
        proxy_add="119.183.220.224:8088"#设置代理服务器,具体的大家可以去西刺免费的IP网站选择一个,“人生苦短,我选代理”
        #------------备用IP-----------
        #proxy_add="124.128.39.138:8088"
        #proxy_add="223.241.78.1064:8010"
        commt_data=use_proxy_2(commt_url,proxy_add) #爬取网页的评论内容
        #正则匹配目标参数:网络类型、机身颜色、存储容量、购买途径、评价、评论日期    
        pat='"aliMallSeller":.*?auctionSku":"(.*?)","auctionTitle.*?"cmsSource":"(.*?)","displayRatePic.*?"rateContent":"(.*?)","rateDate":"(.*?)","reply.*?":""}'
        list_detail=re.compile(pat).findall(commt_data)
    except urllib.error.URLError as e:
        if hasattr(e,"code"):
            print(e.code)
        if hasattr(e,"reason"):
            print(e.reason)

  正则匹配后的数据一个list,而且所有的数据都在一起,如下所示:

所以需要对数据进行拆分,生成不同的字段,分别为‘type#网络类型’,‘color#机身颜色’,‘rom #存储容量’,‘source #来源购买途径’,‘discuss #评论’,‘time #评论日期’。

for i in range(len(list_detail)):#i表示每页第i条评论
        data=list(list_detail[i])
        #print(data)
        item_data=data[0]
        m = re.split('[:;]',item_data)
        #print(m)
        type = m[1]#网络类型
        color = m[3]#机身颜色
        rom = m[5]#存储容量
        source = data[1]#来源购买途径
        discuss = data[2]#评论
        time = data[3]#评论日期

  然后就是将数据存入数据库中,利用python将数据存入数据库的方法有很多,这里我用的是mysql.connector模块。这里在插入数据库前,我们可以先在本地的数据库建好表,如下我用的是MySQL-Front可视化操作工作,比较直观反应。

然后开始将爬到的数据插入数据库,代码:

#插入mysql数据库 #连接数据库,这里注意端口号port的值是int类型,不能写成字符型,我第一次的时候就是吃了苦头 conn = mysql.connector.connect( user='root', password='111111', host='127.0.0.1', port=3306, database='pachong' ) #获取游标 cursor = conn.cursor() #插入数据 cursor.execute("INSERT INTO iphoneX(type,color,rom,source,discuss,time) VALUES ('"+type+"','"+color+"','"+rom+"','"+source+"','"+discuss+"','"+time+"')") print('第'+str(currentPage)+'页,第'+str(i)+'条数据') print('************** 数据保存成功 **************') #提交数据 conn.commit() #关闭连接 cursor.close()

保存成功后,再取数据库中查看,如图所示;

下面看一下完整的实现代码

import urllib
import mysql.connector
import re
import urllib.error
#设置请求头headers
headers=("user-agent","Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36")
opener=urllib.request.build_opener()
opener.addheaders=[headers]#添加报头
urllib.request.install_opener(opener)#设置opner全局化
#设置代理服务器
def use_proxy_1(url,proxy_add):
    proxy=urllib.request.ProxyHandler({'http':proxy_add})
    opener=urllib.request.build_opener(proxy,urllib.request.HTTPHandler)
    urllib.request.install_opener(opener)
    data=urllib.request.urlopen(url).read().decode('utf-8')
    return data
def use_proxy_2(url,proxy_add):
    proxy=urllib.request.ProxyHandler({'http':proxy_add})
    opener=urllib.request.build_opener(proxy,urllib.request.HTTPHandler)
    urllib.request.install_opener(opener)
    data=urllib.request.urlopen(url).read().decode('GB18030')#用GB18030格式转码
    return data
for currentPage in range(1,30):
    try:
        commt_url='https://rate.tmall.com/list_detail_rate.htm?itemId=560257961625&spuId=893336129&sellerId=1917047079&order=3&currentPage='+str(currentPage)+'&append=0&content=1&tagId=&posi=&picture=&'
        proxy_add="119.183.220.224:8088"#设置代理服务器,具体的大家可以去西刺免费的IP网站选择一个,“人生苦短,我选代理”
        #------------备用IP-----------
        #proxy_add="124.128.39.138:8088"
        #proxy_add="223.241.78.1064:8010"
        commt_data=use_proxy_2(commt_url,proxy_add) #爬取网页的评论内容
        #正则匹配目标参数:网络类型、机身颜色、存储容量、购买途径、评价、评论日期    
        pat='"aliMallSeller":.*?auctionSku":"(.*?)","auctionTitle.*?"cmsSource":"(.*?)","displayRatePic.*?"rateContent":"(.*?)","rateDate":"(.*?)","reply.*?":""}'
        list_detail=re.compile(pat).findall(commt_data)
    except urllib.error.URLError as e:
        if hasattr(e,"code"):
            print(e.code)
        if hasattr(e,"reason"):
            print(e.reason)
    #print(list_detail)
    #返回的结果是list形式,通过循环进行遍历
    #考虑到爬取的数据量比较大,还是来一个异常处理,这个东西是必要的,省很多不必要的麻烦
  
    for i in range(len(list_detail)):#i表示每页第i条评论
        data=list(list_detail[i])
        #print(data)
        item_data=data[0]
        m = re.split('[:;]',item_data)
        #print(m)
        type = m[1]#网络类型
        color = m[3]#机身颜色
        rom = m[5]#存储容量
        source = data[1]#来源购买途径
        discuss = data[2]#评论
        time = data[3]#评论日期
        #print(type,color,rom,source,discuss,time)

        try:
            #插入mysql数据库
            #连接数据库,这里注意端口号port的值是int类型,不能写成字符型,我第一次的时候就是吃了苦头
            conn = mysql.connector.connect(
                user='root',
                password='111111',
                host='127.0.0.1',
                port=3306,
                database='pachong'
            )
            #获取游标
            cursor = conn.cursor()
            #插入数据
            cursor.execute("INSERT INTO iphoneX(type,color,rom,source,discuss,time) VALUES ('"+type+"','"+color+"','"+rom+"','"+source+"','"+discuss+"','"+time+"')")
            print('第'+str(currentPage)+'页,第'+str(i)+'条数据')   
            print('************** 数据保存成功 **************')
            #提交数据
            conn.commit()
            #关闭连接
            cursor.close() 
        except Exception as e:
            print(e)
            print('第'+str(currentPage)+'页,第'+str(i)+'条数据')    
            print('*************!!!! 保存失败!!!! **************')  

 04 数据分析

  如果说抓取数据是数据分析的第1步,那么数据清洗就是数据分析的第2步,至于为什么要进行数据清洗呢?如何进行数据清洗呢?本文就不具体描述了,下面具体对我们抓取的天猫商城iphoneX的销售数据进行分析。

  从销售数据可以看出,网络爬虫抓取了‘type#网络类型’,‘color#机身颜色’,‘rom #存储容量’,‘source #来源购买途径’,‘discuss #评论’,‘time #评论日期六类数据,当然还可以抓取更多的数据。这里我们主要是对颜色color和内存rom进行分析,下面利用SQl语句和Pandas库对数据进行基本的分析。

用 SQL 语句分析IphoneX(按颜色)销售比例

  既然销售数据都保存在Mysql数据库中,那么我们不妨先用 SQL 语句做一下统计分析,本节将对iphoneX的销售量做一个销售比例统计分析。我们要统计的是某一个颜色的销售数量占整个销售数量的百分比,这里需要统计和计算如下3类数据。

  • 某一个颜色的iphoneX销售数量
  • iphoneX销售总数量

第1类数据和第2类数据的差值(百分比)  

用 Pandas 和 Matplotlib 分析对胸罩销售比例进行可视化分析

  接下来将使用 Pandas 完成与前面相同的数据分析,并使用 Matplotlib 将分析结果以图形化方式展现出来。

# 打开iphoneX数据库
#数据分析         
from pandas import *
from matplotlib.pyplot import *
import mysql.connector
import matplotlib
import matplotlib.pyplot as plt 

conn = mysql.connector.connect(
                user='root',
                password='111111',
                host='127.0.0.1',
                port=3306,
                database='pachong'
            )
cur=conn.cursor() 
 # 对color进行分组,并统计每一组的记录数
# 对color进行分组,并统计每一组的记录数
try:
    cur.execute("select count(*) from iphoneX;")
    alldata = cur.fetchall()
    #color统计
    cur.execute("select count(*) from iphoneX where color='银色';")
    y_color= cur.fetchall()[0]
    cur.execute("select count(*) from iphoneX where color='深空灰色';")
    h_color= cur.fetchall()[0]
    #rom统计
    cur.execute("select count(*) from iphoneX where rom='64GB';")
    rom64 = cur.fetchall()[0]
    cur.execute("select count(*) from iphoneX where rom='256GB';")
    rom256 = cur.fetchall()[0]
except:
    print("Select is failed")
# 数据可视化
# 饼图要显示的文本
labels1 = [u'y_color',u'h_color']
labels2 = [u'64_rom',u'256_rom']
# 用饼图绘制销售比例
X1=[y_color,h_color]  
X2=[rom64,rom256] 
fig = plt.figure()
#解决不能显示中文的方法
plt.pie(X1,labels=labels1,autopct='%.2f%%') #画饼图(数据,数据对应的标签,百分数保留两位小数点)
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
plt.title("颜色比例图",fontproperties=zhfont1)
plt.show() 
plt.pie(X2,labels=labels2,autopct='%.2f%%') #画饼图(数据,数据对应的标签,百分数保留两位小数点)
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
plt.title("内存比例图",fontproperties=zhfont1)
plt.show() 

从上图的分析结果可以看出,iphoneX的“深空灰色”销售比例都很大,同时买256GB内存的要比64GB内存的比例大,基本上和我个人的判断差不多。今天就介绍到这里了,时间有限,后期会不断更新,大家也可以爬取不同商品的不同信息,进行更加具体的分析。

原创不易,如果觉得文章对你有帮助,欢迎点赞、评论。文章有疏漏之处,欢迎批评指正。

欢迎转载,转载请注明原文链接:http://www.cnblogs.com/PiPifamily/p/8784145.html

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏杨熹的专栏

详解Mac配置虚拟环境Virtualenv,安装Python科学计算包

最近正在自学Python做科学计算,当然在很多书籍和公开课里最先做的就是安装Numpy, Scipy, Matplotlib等包,不过每次安装单独的包时,...

31480
来自专栏杨熹的专栏

Python 爬虫 2 爬取多页网页

参考资料:极客学院: Python单线程爬虫 代码:2.Single-thread-crawler.ipynb 本文内容: Requests.get 爬取多个页...

50750
来自专栏智能算法

10 种机器学习算法的要点(附 Python 和 R 代码)

本文由 伯乐在线 - Agatha 翻译,唐尤华 校稿。 英文出处:SUNIL RAY。欢迎加入翻译组。 前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和...

48950
来自专栏算法channel

Python|生成器

01 列表生成式的缺点 通过列表生成式,我们可以直接创建一个列表。但是,内存数量有限,列表容量肯定不能超过内存大小。 再有,创建一个包含100万个元素的列表...

34750
来自专栏杨熹的专栏

Python 爬虫 1 快速入门

Python 爬虫 快速入门 参考资料:极客学院: Python定向爬虫 代码:1.crawler-basic.ipynb 本文内容: 正则表达式 用正则表达式...

31140
来自专栏架构师小秘圈

日订单50万级分布式事务

作者:伈情,喜玩Java、Python、Golang!热爱架构设计、SOA、微服务、高并发、分布式、性能优化、DevOps、大数据、消息队列等....!在互联网...

1.1K80
来自专栏算法channel

Python-GUI|Tk类,属性文档使用指南

这是一篇tkinter相关API的介绍性地帮助文档,包括常用的包,类结构图,属性取值等,可以作为一个工具文档,供大家查阅。 01Tk中的包 __main...

47870
来自专栏智能算法

十张GIFs让你弄懂递归等概念

链接:http://codingpy.com/article/10-gifs-to-understand-some-programming-concepts/(...

41290
来自专栏算法channel

Python-GUI|生成菜单,封装自己的控件

01 创建菜单 Tk中菜单控件封装在Menu类中。 menubar = Menu(parent) 上面代码指定menbar为Menu,且父控件为parent ...

33360
来自专栏算法channel

Python|高阶函数

01 函数名也是变量! abs(-100) 对于abs()这个函数,完全可以把函数名abs看成变量,它指向一个计算绝对值的函数! 因此,函数名其实就是指向...

39260

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励