【译】TensorFlow实现Batch Normalization

原文:Implementing Batch Normalization in Tensorflow 来源:R2RT

译者注:本文基于一个最基础的全连接网络,演示如何构建Batch Norm层、如何训练以及如何正确进行测试,玩转这份示例代码是理解Batch Norm的最好方式。 文中代码可在jupyter notebook环境下运行:

  • nn_withBN.ipynb,
  • nn_withBN_ok.ipynb

批标准化,是Sergey Ioffe和Christian Szegedy在2015年3月的论文BN2015中提出的一种简单、高效的改善神经网络性能的方法。论文BN2015中,Ioffe和Szegedy指出批标准化不仅能应用更高的学习率、具有正则化器的效用,还能将训练速度提升14倍之多。本文将基于TensorFlow来实现批标准化。

问题的提出

批标准化所要解决的问题是:模型参数在学习阶段的变化,会使每个隐藏层输出的分布也发生改变。这意味着靠后的层要在训练过程中去适应这些变化。

批标准化的概念

为了解决这个问题,论文BN2015提出了批标准化,即在训练时作用于每个神经元激活函数(比如sigmoid或者ReLU函数)的输入,使得基于每个批次的训练样本,激活函数的输入都能满足均值为0,方差为1的分布。对于激活函数σ(Wx+b),应用批标准化后变为σ(BN(Wx+b)),其中BN代表批标准化。

批标准化公式

对一批数据中的某个数值进行标准化,做法是先减去整批数据的均值,然后除以整批数据的标准差√(σ2+ε)。注意小的常量ε加到方差中是为了防止除零。给定一个数值xi,一个初始的批标准化公式如下:

上面的公式中,批标准化对激活函数的输入约束为正态分布,但是这样一来限制了网络层的表达能力。为此,可以通过乘以一个新的比例参数γ,并加上一个新的位移参数β,来让网络撤销批标准化变换。γ和β都是可学习参数。

加入γ和β后得到下面最终的批标准化公式:

基于TensorFlow实现批标准化

我们将把批标准化加进一个有两个隐藏层、每层包含100个神经元的全连接神经网络,并展示与论文BN2015中图1(b)和(c)类似的实验结果。

需要注意,此时该网络还不适合在测试期使用。后面的“模型预测”一节中将会阐释其中的原因,并给出修复版本。

Imports, config

import numpy as np, tensorflow as tf, tqdm
from tensorflow.examples.tutorials.mnist                       
import input_data
import matplotlib.pyplot as plt
%matplotlib inline
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# Generate predetermined random weights so the networks are similarly initialized
w1_initial = np.random.normal(size=(784,100)).astype(np.float32)
w2_initial = np.random.normal(size=(100,100)).astype(np.float32)
w3_initial = np.random.normal(size=(100,10)).astype(np.float32)

# Small epsilon value for the BN transform
epsilon = 1e-3

Building the graph

# Placeholders
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

# Layer 1 without BN
w1 = tf.Variable(w1_initial)
b1 = tf.Variable(tf.zeros([100]))
z1 = tf.matmul(x,w1)+b1
l1 = tf.nn.sigmoid(z1)

下面是经过批标准化的第一层:

# Layer 1 with BN
w1_BN = tf.Variable(w1_initial)

# Note that pre-batch normalization bias is ommitted. The effect of this bias would be
# eliminated when subtracting the batch mean. Instead, the role of the bias is performed
# by the new beta variable. See Section 3.2 of the BN2015 paper.
z1_BN = tf.matmul(x,w1_BN)

# Calculate batch mean and variance
batch_mean1, batch_var1 = tf.nn.moments(z1_BN,[0])

# Apply the initial batch normalizing transform
z1_hat = (z1_BN - batch_mean1) / tf.sqrt(batch_var1 + epsilon)

# Create two new parameters, scale and beta (shift)
scale1 = tf.Variable(tf.ones([100]))
beta1 = tf.Variable(tf.zeros([100]))

# Scale and shift to obtain the final output of the batch normalization
# this value is fed into the activation function (here a sigmoid)
BN1 = scale1 * z1_hat + beta1
l1_BN = tf.nn.sigmoid(BN1)

# Layer 2 without BN
w2 = tf.Variable(w2_initial)
b2 = tf.Variable(tf.zeros([100]))
z2 = tf.matmul(l1,w2)+b2
l2 = tf.nn.sigmoid(z2)

TensorFlow提供了tf.nn.batch_normalization,我用它定义了下面的第二层。这与上面第一层的代码行为是一样的。查阅官方文档在这里,查阅开源代码在这里

# Layer 2 with BN, using Tensorflows built-in BN function
w2_BN = tf.Variable(w2_initial)
z2_BN = tf.matmul(l1_BN,w2_BN)
batch_mean2, batch_var2 = tf.nn.moments(z2_BN,[0])
scale2 = tf.Variable(tf.ones([100]))
beta2 = tf.Variable(tf.zeros([100]))
BN2 = tf.nn.batch_normalization(z2_BN,batch_mean2,batch_var2,beta2,scale2,epsilon)
l2_BN = tf.nn.sigmoid(BN2)

# Softmax
w3 = tf.Variable(w3_initial)
b3 = tf.Variable(tf.zeros([10]))
y  = tf.nn.softmax(tf.matmul(l2,w3)+b3)

w3_BN = tf.Variable(w3_initial)
b3_BN = tf.Variable(tf.zeros([10]))
y_BN  = tf.nn.softmax(tf.matmul(l2_BN,w3_BN)+b3_BN)

# Loss, optimizer and predictions
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
cross_entropy_BN = -tf.reduce_sum(y_*tf.log(y_BN))

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
train_step_BN = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy_BN)

correct_prediction = tf.equal(tf.arg_max(y,1),tf.arg_max(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
correct_prediction_BN = tf.equal(tf.arg_max(y_BN,1),tf.arg_max(y_,1))
accuracy_BN = tf.reduce_mean(tf.cast(correct_prediction_BN,tf.float32))

Training the network

zs, BNs, acc, acc_BN = [], [], [], []

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
for i in tqdm.tqdm(range(40000)):
    batch = mnist.train.next_batch(60)
    train_step.run(feed_dict={x: batch[0], y_: batch[1]})
    train_step_BN.run(feed_dict={x: batch[0], y_: batch[1]})
    if i % 50 is 0:
        res = sess.run([accuracy,accuracy_BN,z2,BN2],feed_dict={x: mnist.test.images, y_: mnist.test.labels})
        acc.append(res[0])
        acc_BN.append(res[1])
        zs.append(np.mean(res[2],axis=0)) # record the mean value of z2 over the entire test set
        BNs.append(np.mean(res[3],axis=0)) # record the mean value of BN2 over the entire test set

zs, BNs, acc, acc_BN = np.array(zs), np.array(BNs), np.array(acc), np.array(acc_BN)

速度和精度的提升

如下所示,应用批标准化后,精度和训练速度均有可观的改善。论文BN2015中的图2显示,批标准化对于其他网络架构也同样具有重要作用。

fig, ax = plt.subplots()

ax.plot(range(0,len(acc)*50,50),acc, label='Without BN')
ax.plot(range(0,len(acc)*50,50),acc_BN, label='With BN')
ax.set_xlabel('Training steps')
ax.set_ylabel('Accuracy')
ax.set_ylim([0.8,1])
ax.set_title('Batch Normalization Accuracy')
ax.legend(loc=4)
plt.show()

激活函数输入的时间序列图示

下面是网络第2层的前5个神经元的sigmoid激活函数输入随时间的分布情况。批标准化在消除输入的方差/噪声上具有显著的效果。

fig, axes = plt.subplots(5, 2, figsize=(6,12))
fig.tight_layout()

for i, ax in enumerate(axes):
    ax[0].set_title("Without BN")
    ax[1].set_title("With BN")
    ax[0].plot(zs[:,i])
    ax[1].plot(BNs[:,i])

模型预测

使用批标准化模型进行预测时,使用批量样本自身的均值和方差会适得其反。想象一下单个样本进入我们训练的模型会发生什么?激活函数的输入将永远为零(因为我们做的是均值为0的标准化),而且无论输入是什么,我们总得到相同的结果。

验证如下:

predictions = []
correct = 0
for i in range(100):
    pred, corr = sess.run([tf.arg_max(y_BN,1), accuracy_BN],
                         feed_dict={x: [mnist.test.images[i]], y_: [mnist.test.labels[i]]})
    correct += corr
    predictions.append(pred[0])
print("PREDICTIONS:", predictions)
print("ACCURACY:", correct/100)

PREDICTIONS: [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
ACCURACY: 0.02

我们的模型总是输出8,在MNIST的前100个样本中8实际上只有2个,所以精度只有2%。

修改模型的测试期行为

为了修复这个问题,我们需要将批均值和批方差替换成全局均值和全局方差。详见论文BN2015的3.1节。但是这会造成,上面的模型想正确的工作,就只能一次性的将测试集所有样本进行预测,因为这样才能算出理想的全局均值和全局方差。

为了使批标准化模型适用于测试,我们需要在测试前的每一步批标准化操作时,都对全局均值和全局方差进行估算,然后才能在做预测时使用这些值。和我们需要批标准化的原因一样(激活输入的均值和方差在训练时会发生变化),估算全局均值和方差最好在其依赖的权重更新完成后,但是同时进行也不算特别糟,因为权重在训练快结束时就收敛了。

现在,为了基于TensorFlow来实现修复,我们要写一个batch_norm_wrapper函数,来封装激活输入。这个函数会将全局均值和方差作为tf.Variables来存储,并在做标准化时决定采用批统计还是全局统计。为此,需要一个is_training标记。当is_training == True,我们就要在训练期学习全局均值和方差。代码骨架如下:

def batch_norm_wrapper(inputs, is_training):
    ...
    pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)
    pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)

    if is_training:
        mean, var = tf.nn.moments(inputs,[0])
        ...
        # learn pop_mean and pop_var here
        ...
        return tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, scale, epsilon)
    else:
        return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, epsilon)

注意变量节点声明了 trainable = False,因为我们将要自行更新它们,而不是让最优化器来更新。

在训练期间,一个计算全局均值和方差的方法是指数平滑法,它很简单,且避免了额外的工作,我们应用如下:

decay = 0.999 # use numbers closer to 1 if you have more data
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay))

最后,我们需要解决如何调用这些训练期操作。为了完全可控,你可以把它们加入到一个graph collection(可以看看下面链接的TensorFlow源码),但是简单起见,我们将会在每次计算批均值和批方差时都调用它们。为此,当is_training为True时,我们把它们作为依赖加入了batch_norm_wrapper的返回值中。最终的batch_norm_wrapper函数如下:

# this is a simpler version of Tensorflow's 'official' version. See:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/layers.py#L102
def batch_norm_wrapper(inputs, is_training, decay = 0.999):

    scale = tf.Variable(tf.ones([inputs.get_shape()[-1]]))
    beta = tf.Variable(tf.zeros([inputs.get_shape()[-1]]))
    pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)
    pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)

    if is_training:
        batch_mean, batch_var = tf.nn.moments(inputs,[0])
        train_mean = tf.assign(pop_mean,
                               pop_mean * decay + batch_mean * (1 - decay))
        train_var = tf.assign(pop_var,
                              pop_var * decay + batch_var * (1 - decay))
        with tf.control_dependencies([train_mean, train_var]):
            return tf.nn.batch_normalization(inputs,
                batch_mean, batch_var, beta, scale, epsilon)
    else:
        return tf.nn.batch_normalization(inputs,
            pop_mean, pop_var, beta, scale, epsilon)

实现正常测试

现在为了证明修复后的代码可以正常测试,我们使用batch_norm_wrapper重新构建模型。注意,我们不仅要在训练时做一次构建,在测试时还要重新做一次构建,所以我们写了一个build_graph函数(实际的模型对象往往也是这么封装的):

def build_graph(is_training):
    # Placeholders
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder(tf.float32, shape=[None, 10])

    # Layer 1
    w1 = tf.Variable(w1_initial)
    z1 = tf.matmul(x,w1)
    bn1 = batch_norm_wrapper(z1, is_training)
    l1 = tf.nn.sigmoid(bn1)

    #Layer 2
    w2 = tf.Variable(w2_initial)
    z2 = tf.matmul(l1,w2)
    bn2 = batch_norm_wrapper(z2, is_training)
    l2 = tf.nn.sigmoid(bn2)

    # Softmax
    w3 = tf.Variable(w3_initial)
    b3 = tf.Variable(tf.zeros([10]))
    y  = tf.nn.softmax(tf.matmul(l2, w3))

    # Loss, Optimizer and Predictions
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))

    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

    correct_prediction = tf.equal(tf.arg_max(y,1),tf.arg_max(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

    return (x, y_), train_step, accuracy, y, tf.train.Saver()

#Build training graph, train and save the trained model

sess.close()
tf.reset_default_graph()
(x, y_), train_step, accuracy, _, saver = build_graph(is_training=True)

acc = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in tqdm.tqdm(range(10000)):
        batch = mnist.train.next_batch(60)
        train_step.run(feed_dict={x: batch[0], y_: batch[1]})
        if i % 50 is 0:
            res = sess.run([accuracy],feed_dict={x: mnist.test.images, y_: mnist.test.labels})
            acc.append(res[0])
    saved_model = saver.save(sess, './temp-bn-save')

print("Final accuracy:", acc[-1])

Final accuracy: 0.9721

现在应该一切正常了,我们重复上面的实验:

tf.reset_default_graph()
(x, y_), _, accuracy, y, saver = build_graph(is_training=False)

predictions = []
correct = 0
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, './temp-bn-save')
    for i in range(100):
        pred, corr = sess.run([tf.arg_max(y,1), accuracy],
                             feed_dict={x: [mnist.test.images[i]], y_: [mnist.test.labels[i]]})
        correct += corr
        predictions.append(pred[0])
print("PREDICTIONS:", predictions)
print("ACCURACY:", correct/100)

PREDICTIONS: [7, 2, 1, 0, 4, 1, 4, 9, 6, 9, 0, 6, 9, 0, 1, 5, 9, 7, 3, 4, 9, 6, 6, 5, 4, 0, 7, 4, 0, 1, 3, 1, 3, 4, 7, 2, 7, 1, 2, 1, 1, 7, 4, 2, 3, 5, 1, 2, 4, 4, 6, 3, 5, 5, 6, 0, 4, 1, 9, 5, 7, 8, 9, 3, 7, 4, 6, 4, 3, 0, 7, 0, 2, 9, 1, 7, 3, 2, 9, 7, 7, 6, 2, 7, 8, 4, 7, 3, 6, 1, 3, 6, 9, 3, 1, 4, 1, 7, 6, 9]
ACCURACY: 0.99

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏编程

CNN之文本分类之网络结构

本文主要是基于Yoon Kim的Convolutional Neural Networks for Sentence Classification,用中文重新梳...

26660
来自专栏CVer

风格迁移三部曲(一)之普通风格迁移

风格迁移(Style Transfer)是一个很有意思的任务,通过风格迁移可以使一张图片保持本身内容大致不变的情况下呈现出另外一张图片的风格。风格迁移三步曲将绍...

18000
来自专栏深度学习那些事儿

利用pytorch实现神经网络风格迁移Neural Transfer

载入图像输入大小无要求,最终会被剪裁到相同大小,这是因为神经网络设计了一个特定的输入大小,因此内容图像和风格图像必须大小一致。

37270
来自专栏Ldpe2G的个人博客

Mxnet 实现图片快速风格化

论文链接:Perceptual Losses for Real-Time Style Transfer and Super-Resolution

18570
来自专栏瓜大三哥

竞争型神经网络续1

1.竞争神经网络函数 1.1创建函数 1.1.1 newc函数 newc函数用于创建一个竞争层,这是一个旧版本的函数,现在用competlayer函数代替。函数...

434100
来自专栏书山有路勤为径

Recurrent Neural Networks (RNNs)

许多应用涉及时间依赖,或基于时间依赖。这表示我们当前输出不仅仅取决于当前输入,还依赖于过去的输入。 RNN存在一个关键缺陷,因为几乎不可能捕获超过8或10步的...

18230
来自专栏企鹅号快讯

常用的像素操作算法:Resize、Flip、Rotate

Resize 图像缩放是把原图像按照目标尺寸放大或者缩小,是图像处理的一种。 图像缩放有多种算法。最为简单的是最临近插值算法,它是根据原图像和目标图像的尺寸,计...

467100
来自专栏人工智能LeadAI

黑猿大叔-译文 | TensorFlow实现Batch Normalization

原文:Implementing Batch Normalization in Tensorflow(https://r2rt.com/implementing-...

57780
来自专栏Ldpe2G的个人博客

Mxnet 实现图片快速风格化

22430
来自专栏决胜机器学习

机器学习(十一) ——神经网络基础

机器学习(十一)——神经网络基础 (原创内容,转载请注明来源,谢谢) 一、概述 神经网络,可以理解为输入的内容,经过一系列的内部的处理,得到输出的假设函数。简...

39260

扫码关注云+社区

领取腾讯云代金券