【DataMagic】如何在万亿级别规模的数据量上使用Spark

作者:张国鹏 | 腾讯 运营开发工程师

一、前言

Spark作为大数据计算引擎,凭借其快速、稳定、简易等特点,快速的占领了大数据计算的领域。本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路。文章内容为介绍Spark在DataMagic平台扮演的角色、如何快速掌握Spark以及DataMagic平台是如何使用好Spark的。

二、Spark在DataMagic平台中的角色

图 2-1

整套架构的主要功能为日志接入、查询(实时和离线)、计算。离线计算平台主要负责计算这一部分,系统的存储用的是COS(公司内部存储),而非HDFS。

下面将主要介绍Spark on Yarn这一架构,抽取出来即图2-2所示,可以看到Spark on yarn的运行流程。

图2-2

三、如何快速掌握Spark

对于理解Spark,我觉得掌握下面4个步骤就可以了。

1.理解Spark术语

对于入门,学习Spark可以通过其架构图,快速了解其关键术语,掌握了关键术语,对Spark基本上就有认识了,分别是结构术语Shuffle、Patitions、MapReduce、Driver、Application Master、Container、Resource Manager、Node Manager等。API编程术语关键RDD、DataFrame,结构术语用于了解其运行原理,API术语用于使用过程中编写代码,掌握了这些术语以及背后的知识,你就也知道Spark的运行原理和如何编程了。

2.掌握关键配置

Spark在运行的时候,很多运行信息是通过配置文件读取的,一般在spark-defaults.conf,要把Spark使用好,需要掌握一些关键配置,例如跟运行内存相关的,spark.yarn.executor.memoryOverhead、spark.executor.memory,跟超时相关的spark.network.timeout等等,Spark很多信息都可以通过配置进行更改,因此对于配置需要有一定的掌握。但是使用配置时,也要根据不同的场景,这个举个例子,例如spark.speculation配置,这个配置主要目的是推测执行,当worker1执行慢的情况下,Spark会启动一个worker2,跟worker1执行相同的任务,谁先执行完就用谁的结果,从而加快计算速度,这个特性在一般计算任务来说是非常好的,但是如果是执行一个出库到Mysql的任务时,同时有两个一样的worker,则会导致Mysql的数据重复。因此我们在使用配置时,一定要理解清楚,直接google spark conf就会列出很多配置了。

3.使用好Spark的并行

我们之所以使用Spark进行计算,原因就是因为它计算快,但是它快的原因很大在于它的并行度,掌握Spark是如何提供并行服务的,从而是我们更好的提高并行度。

对于提高并行度,对于RDD,需要从几个方面入手,1、配置num-executor。2、配置executor-cores。3、配置spark.default.parallelism。三者之间的关系一般为spark.default.parallelism=num-executors*executor-cores的2~3倍较为合适。对于Spark-sql,则设置spark.sql.shuffle.partitions、num-executor和executor-cores。

4.学会如何修改Spark代码

新手而言,特别是需要对Spark进行优化或者修改时,感到很迷茫,其实我们可以首先聚焦于局部,而Spark确实也是模块化的,不需要觉得Spark复杂并且难以理解,我将从修改Spark代码的某一角度来进行分析。

首先,Spark的目录结构如图3-1所示,可以通过文件夹,快速知道sql、graphx等代码所在位置,而Spark的运行环境主要由jar包支撑,如图3-2所示,这里截取部分jar包,实际上远比这多,所有的jar包都可以通过Spark的源代码进行编译,当需要修改某个功能时,仅需要找到相应jar包的代码,修改之后,编译该jar包,然后进行替换就行了。

图3-1
图3-2

而对于编译源代码这块,其实也非常简单,安装好maven、scala等相关依赖,下载源代码进行编译即可,掌握修改源码技巧对于使用好开源项目十分重要。

四、DataMagic平台中的Spark

Spark在DataMagic中使用,也是在边使用边探索的过程,在这过程中,列举了其比较重要的特点。

1.快速部署

在计算中,计算任务的数量以及数据的量级每天都会发生变化,因此对于Spark平台,需要有快速部署的特性,在实体机上,有一键部署脚本,只要运行一个脚本,则可以马上上线一个拥有128G内存、48cores的实体机,但是实体机通常需要申请报备才能获得,因此还会有docker来支持计算资源。

2.巧用配置优化计算

Spark大多数属性都是通过配置来实现的,因此可以通过配置动态修改Spark的运行行为,这里举个例子,例如通过配置自动调整exector的数量。

2.1 在nodeManager的yarn-site.xml添加配置

 <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle,spark_shuffle</value>
   </property>
   <property>
      <name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
      <value>org.apache.spark.network.yarn.YarnShuffleService</value>
   </property>

2.2 将spark-2.2.0-yarn-shuffle.jar文件拷贝到hadoop-yarn/lib目录下(即yarn的库目录)

2.3 在Spark的spark-default.xml添加配置

spark.dynamicAllocation.minExecutors 1 #最小Executor数
spark.dynamicAllocation.maxExecutors 100 #最大Executor数

通过这种配置,可以达到自动调整exector的目的。

3.合理分配资源

作为一个平台,其计算任务肯定不是固定的,有的数据量多,有的数据量少,因此需要合理分配资源,例如有些千万、亿级别的数据,分配20核计算资源就足够了。但是有些数据量级达到百亿的,就需要分配更多的计算资源了。参考第三章节的第3点。

4.贴合业务需求

计算的目的其实就是为了服务业务,业务的需求也理应是平台的追求,当业务产生合理需求时,平台方也应该尽量去满足。如为了支持业务高并发、高实时性查询的需求下,Spark在数据出库方式上,支持了Cmongo的出库方式。

sc = SparkContext(conf=conf) sqlContext = SQLContext(sc) database = d = dict((l.split('=') for l in dbparameter.split())) parquetFile = sqlContext.read.parquet(file_name) parquetFile.registerTempTable(tempTable) result = sqlContext.sql(sparksql) url = "mongodb://"+database['user']+":"+database['password']+"@"+database['host']+":"+database['port'] result.write.format("com.mongodb.spark.sql").mode('overwrite').options(uri=url,database=database['dbname'],collection=pg_table_name).save()

5.适用场景

Spark作为通用的计算平台,在普通的应用的场景下,一般而言是不需要额外修改的,但是DataMagic平台上,我们需要“在前行中改变”。这里举个简单的场景,在日志分析中,日志的量级达到千亿/日的级别,当底层日志的某些字段出现utf-8编码都解析不了的时候,在Spark任务中进行计算会发生异常,然后失败,然而如果在数据落地之前对乱码数据进行过滤,则有可能会影响数据采集的效率,因此最终决定在Spark计算过程中解决中这个问题,因此在Spark计算时,对数据进行转换的代码处加上异常判断来解决该问题。

6.Job问题定位

Spark在计算任务失败时候,需要去定位失败原因,当Job失败是,可以通过yarn logs -applicationId application 来合并任务log,打开log,定位到Traceback,一般可以找到失败原因。一般而言,失败可以分成几类。

a. 代码问题,写的Sql有语法问题,或者Spark代码有问题。

b. Spark问题,旧Spark版本处理NULL值等。

c. 任务长时间Running状态,则可能是数据倾斜问题。

d. 任务内存越界问题。

7.集群管理

Spark集群在日常使用中,也是需要运营维护的,从而运营维护,发现其存在的问题,不断的对集群进行优化,这里从以下几个方面进行介绍,通过运营手段来保障集群的健壮性和稳定性,保证任务顺利执行。

a. 定时查看是否有lost node和unhealthy node,可以通过脚本来定时设置告警,若存在,则需要进行定位处理。

b. 定时扫描hdfs的运行log是否满了,需要定时删除过期log。

c. 定时扫描集群资源是否满足计算任务使用,能够提前部署资源。

五、总结

本文主要是通过作者在搭建使用计算平台的过程中,写出对于Spark的理解,并且介绍了Spark在当前的DataMagic是如何使用的,当前平台已经用于架平离线分析,每天计算分析的数据量已经达到千亿~万亿级别。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT派

关于大数据分析系统 Hadoop,这里有13个开源工具送给你

Hadoop是由Apache基金会开发的一个大数据分布式系统基础架构,最早版本是2003年原Yahoo!DougCutting根据Google发布的学术论文研究...

1182
来自专栏大数据挖掘DT机器学习

大数据架构师基础:hadoop家族,Cloudera系列产品介绍

大数据我们都知道hadoop,可是还会各种各样的技术进入我们的视野:Spark,Storm,impala,让我们都反映不过来。为了能够更好的架构大数据项目,这...

5085
来自专栏我是攻城师

Apache Pig如何与Apache Lucene集成?

3105
来自专栏蓝天

HDFS Federation

Federation翻译成中文是联盟或联邦的意思,网上有很多介绍HDFS Federation的文章,官网上的Federation.html也做了专门的介绍...

1202
来自专栏CSDN技术头条

Spark Streaming vs. Kafka Stream 哪个更适合你?

译者注:本文介绍了两大常用的流式处理框架,Spark Streaming和Kafka Stream,并对他们各自的特点做了详细说明,以帮助读者在不同的场景下对框...

7286
来自专栏性能与架构

【教程】Hadoop HDFS 实践

1. 教程内容 1)目标 主要帮您解决以下几个问题: HDFS 是用来解决什么问题的?怎么解决的? 如何在命令行下操作 HDFS ? 如何使用 java api...

35510
来自专栏加米谷大数据

大数据基础之Spark

Spark 是 2010 年由 UC Berkeley AMPLab 开源的一款 基于内存的分布式计算框架,2013 年被Apache 基金会接管,是当前大数据...

1002
来自专栏大数据技术学习

大数据学习带你了解Hadoop如何高效处理大数据

Hadoop与Google一样,都是小孩命名的,是一个虚构的名字,没有特别的含义。从计算机专业的角度看,Hadoop是一个分布式系统基础架构,由Apache基金...

1672
来自专栏PPV课数据科学社区

Hadoop并非完美:8个代替 HDFS的绝佳方案

HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,坦白说HDFS是一个...

3645
来自专栏携程技术中心

干货 | ALLUXIO在携程大数据平台中的应用与实践

2842

扫码关注云+社区

领取腾讯云代金券