【专知荟萃26】行人重识别 Person Re-identification知识资料全集(入门/进阶/论文/综述/代码,附查看)

行人重识别 Person Re-identification / Person Retrieval 专知荟萃

  • 行人重识别 Person Re-identification / Person Retrieval 专知荟萃
  • 入门学习
  • 进阶论文及代码
    • Person Re-identification / Person Retrieval
    • Person Search
    • Re-ID with GAN
    • Vehicle Re-ID
    • Deep Metric Learning
    • Re-ID with Attributes Prediction
    • Video-based Person Re-Identification
    • Re-ranking
  • 实战项目
  • 教程
  • 综述
  • 数据集
    • 图像数据集
    • Attribute相关数据集
    • 视频相关数据集
    • NLP相关数据集
  • 领域专家

入门学习

  1. 行人重识别综述
    • [http://www.jianshu.com/p/98cc04cca0ae?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation\]
  2. 基于深度学习的Person Re-ID(综述)
    • [http://blog.csdn.net/linolzhang/article/details/71075756]
  3. 郑哲东 -Deep-ReID:行人重识别的深度学习方法
    • PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]
    • 视频:[http://www.bilibili.com/video/av13796843/]
  4. 【行人识别】Deep Transfer Learning for Person Re-identification
    • [http://blog.csdn.net/shenxiaolu1984/article/details/53607268]
  5. 知乎专栏:行人重识别 [https://zhuanlan.zhihu.com/personReid]
    • 行人重识别综述:从哈利波特地图说起
    • 行人再识别中的迁移学习:图像风格转换(Learning via Translation)
    • 行人对齐+重识别网络
    • SVDNet for Pedestrian Retrieval:CNN到底认为哪个投影方向是重要的?
    • 用GAN生成的图像做训练?Yes!
    • 2017 ICCV 行人检索/重识别 接受论文汇总
    • 从人脸识别 到 行人重识别,下一个风口
  6. GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景?
    • [https://www.zhihu.com/question/53001881/answer/170077548]
  7. Re-id Resources
    • [https://wangzwhu.github.io/home/re_id_resources.html\]
  8. 行人再识别(行人重识别)【包含与行人检测的对比】
    • [http://blog.csdn.net/liuqinglong110/article/details/41699861]
  9. 行人重识别综述(Person Re-identification: Past, Present and Future)
    • [http://blog.csdn.net/auto1993/article/details/74091803]

进阶论文及代码

Person Re-identification / Person Retrieval

  1. DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification
    • intro: CVPR 2014
    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf]
  2. An Improved Deep Learning Architecture for Person Re-Identification
    • intro: CVPR 2015
    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf]
    • github: [https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID]
  3. Deep Ranking for Person Re-identification via Joint Representation Learning
    • intro: IEEE Transactions on Image Processing [TIP], 2016
    • arxiv: [https://arxiv.org/abs/1505.06821]
  4. PersonNet: Person Re-identification with Deep Convolutional Neural Networks
    • arxiv: [http://arxiv.org/abs/1601.07255]
  5. Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification
    • intro: CVPR 2016
    • arxiv: [https://arxiv.org/abs/1604.07528]
    • github: [https://github.com/Cysu/dgd_person_reid]
  6. Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function
    • intro: CVPR 2016
    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cheng_Person_Re-Identification_by_CVPR_2016_paper.pdf]
  7. End-to-End Comparative Attention Networks for Person Re-identification
    • [https://arxiv.org/abs/1606.04404]
  8. A Multi-task Deep Network for Person Re-identification
    • arxiv: [http://arxiv.org/abs/1607.05369]
  9. Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification
    • arxiv: [http://arxiv.org/abs/1607.08378]
  10. A Siamese Long Short-Term Memory Architecture for Human Re-Identification
    • arxiv: [http://arxiv.org/abs/1607.08381]
  11. Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification
    • arxiv: [https://arxiv.org/abs/1607.08378]
  12. Person Re-identification: Past, Present and Future
    • [https://arxiv.org/abs/1610.02984]
  13. Deep Learning Prototype Domains for Person Re-Identification
    • arxiv: [https://arxiv.org/abs/1610.05047]
  14. Deep Transfer Learning for Person Re-identification
    • arxiv: [https://arxiv.org/abs/1611.05244]
  15. A Discriminatively Learned CNN Embedding for Person Re-identification
    • arxiv: [https://arxiv.org/abs/1611.05666]
    • github[MatConvnet]: [https://github.com/layumi/2016_person_re-ID]
  16. Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification
    • arxiv: [https://arxiv.org/abs/1702.04179]
  17. In Defense of the Triplet Loss for Person Re-Identification
    • arxiv: [https://arxiv.org/abs/1703.07737]
    • github[Theano]: [https://github.com/VisualComputingInstitute/triplet-reid]
  18. Beyond triplet loss: a deep quadruplet network for person re-identification
    • intro: CVPR 2017
    • arxiv: [https://arxiv.org/abs/1704.01719]
  19. Part-based Deep Hashing for Large-scale Person Re-identification
    • intro: IEEE Transactions on Image Processing, 2017
    • arxiv: [https://arxiv.org/abs/1705.02145]
  20. Deep Person Re-Identification with Improved Embedding
    • [https://arxiv.org/abs/1705.03332]
  21. Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters
    • arxiv: [https://arxiv.org/abs/1705.04608]
    • github: [https://github.com/VisualComputingInstitute/towards-reid-tracking]
  22. Person Re-Identification by Deep Joint Learning of Multi-Loss Classification
    • intro: IJCAI 2017
    • arxiv: [https://arxiv.org/abs/1705.04724]
  23. Attention-based Natural Language Person Retrieval
    • intro: CVPR 2017 Workshop [vision meets cognition]
    • keywords: Bidirectional Long Short- Term Memory [BLSTM]
    • arxiv: [https://arxiv.org/abs/1705.08923]
  24. Unsupervised Person Re-identification: Clustering and Fine-tuning
    • arxiv: [https://arxiv.org/abs/1705.10444]
    • github: [https://github.com/hehefan/Unsupervised-Person-Re-identification-Clustering-and-Fine-tuning]
  25. Deep Representation Learning with Part Loss for Person Re-Identification
    • [https://arxiv.org/abs/1707.00798]
  26. Pedestrian Alignment Network for Large-scale Person Re-identification
    • [https://raw.githubusercontent.com/layumi/Pedestrian_Alignment/master/fig2.jpg]
    • arxiv: [https://arxiv.org/abs/1707.00408]
    • github: [https://github.com/layumi/Pedestrian_Alignment]
  27. Deep Reinforcement Learning Attention Selection for Person Re-Identification
    • [https://arxiv.org/abs/1707.02785]
  28. Learning Efficient Image Representation for Person Re-Identification
    • [https://arxiv.org/abs/1707.02319]
  29. Person Re-identification Using Visual Attention
    • intro: ICIP 2017
    • arxiv: [https://arxiv.org/abs/1707.07336]
  30. Deeply-Learned Part-Aligned Representations for Person Re-Identification
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1707.07256]
  31. What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification
    • [https://arxiv.org/abs/1707.07074]
  32. Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification
    • [https://arxiv.org/abs/1707.07791]
  33. Divide and Fuse: A Re-ranking Approach for Person Re-identification
    • intro: BMVC 2017
    • arxiv: [https://arxiv.org/abs/1708.04169]
  34. Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification
    • intro: IEEE Transactions on Multimedia
    • arxiv: [https://arxiv.org/abs/1708.05512]
  35. Multi-scale Deep Learning Architectures for Person Re-identification
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1709.05165]
  36. Pose-driven Deep Convolutional Model for Person Re-identification
    • [https://arxiv.org/abs/1709.08325]
  37. HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis
    • intro: ICCV 2017. CUHK & SenseTime,
    • arxiv: [https://arxiv.org/abs/1709.09930]
    • github: [https://github.com/xh-liu/HydraPlus-Net]
  38. Person Re-Identification with Vision and Language
    • [https://arxiv.org/abs/1710.01202]
  39. Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification
    • [https://arxiv.org/abs/1710.00478]
  40. Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification
    • intro: CVPR 2017. CASIA
    • keywords: Multi-Scale Context-Aware Network [MSCAN]
    • arxiv: [https://arxiv.org/abs/1710.06555]
  41. Pseudo-positive regularization for deep person re-identification
    • [https://arxiv.org/abs/1711.06500]
  42. Let Features Decide for Themselves: Feature Mask Network for Person Re-identification
    • keywords: Feature Mask Network [FMN]
    • arxiv: [https://arxiv.org/abs/1711.07155]
  43. Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification
    • [https://arxiv.org/abs/1711.07027]
  44. AlignedReID: Surpassing Human-Level Performance in Person Re-Identification
    • intro: Megvii, Inc & Zhejiang University
    • arxiv: [https://arxiv.org/abs/1711.08184]
    • evaluation website: [Market1501]: [http://reid-challenge.megvii.com/]
    • evaluation website: [CUHK03]: [http://reid-challenge.megvii.com/cuhk03]
  45. Region-based Quality Estimation Network for Large-scale Person Re-identification
    • intro: AAAI 2018
    • arxiv: [https://arxiv.org/abs/1711.08766]
  46. Deep-Person: Learning Discriminative Deep Features for Person Re-Identification
    • [https://arxiv.org/abs/1711.10658]
  47. A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking
    • arxiv: [https://arxiv.org/abs/1711.10378]
    • github: [https://github.com/pse-ecn/pose-sensitive-embedding]

Person Search

  1. Joint Detection and Identification Feature Learning for Person Search
    • intro: CVPR 2017
    • keywords: Online Instance Matching OIM loss function
    • homepage[dataset+code]:[http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html]
    • arxiv: [https://arxiv.org/abs/1604.01850]
    • paper: [http://www.ee.cuhk.edu.hk/~xgwang/PS/paper.pdf]
    • github[official. Caffe]: [https://github.com/ShuangLI59/person_search]
  2. Person Re-identification in the Wild
    • intro: CVPR 2017 spotlight
    • keywords: PRW dataset
    • project page: [http://www.liangzheng.com.cn/Project/project_prw.html]
    • arxiv: [https://arxiv.org/abs/1604.02531]
    • github: [https://github.com/liangzheng06/PRW-baseline]
  3. IAN: The Individual Aggregation Network for Person Search
    • [https://arxiv.org/abs/1705.05552]
  4. Neural Person Search Machines
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1707.06777]

Re-ID with GAN

  1. Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1701.07717]
    • github: [https://github.com/layumi/Person-reID_GAN]
  2. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
    • [https://arxiv.org/abs/1711.08565]

Vehicle Re-ID

  1. Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1708.03918]

Deep Metric Learning

  1. Deep Metric Learning for Person Re-Identification
    • intro: ICPR 2014
    • paper: [http://www.cbsr.ia.ac.cn/users/zlei/papers/ICPR2014/Yi-ICPR-14.pdf]
  2. Deep Metric Learning for Practical Person Re-Identification
    • [https://arxiv.org/abs/1407.4979]
  3. Constrained Deep Metric Learning for Person Re-identification
    • [https://arxiv.org/abs/1511.07545]
  4. DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
    • intro: TuSimple
    • keywords: pedestrian re-identification
    • arxiv: [https://arxiv.org/abs/1707.01220]

Re-ID with Attributes Prediction

  1. Deep Attributes Driven Multi-Camera Person Re-identification
    • intro: ECCV 2016
    • arxiv: [https://arxiv.org/abs/1605.03259]
  2. Improving Person Re-identification by Attribute and Identity Learning
    • [https://arxiv.org/abs/1703.07220]

Video-based Person Re-Identification

  1. Recurrent Convolutional Network for Video-based Person Re-Identification
    • intro: CVPR 2016
    • paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.pdf]
    • github: [https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID]
  2. Deep Recurrent Convolutional Networks for Video-based Person Re-identification: An End-to-End Approach
    • [https://arxiv.org/abs/1606.01609]
  3. Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1708.02286]
  4. Three-Stream Convolutional Networks for Video-based Person Re-Identification
    • [https://arxiv.org/abs/1712.01652]

Re-ranking

  1. Re-ranking Person Re-identification with k-reciprocal Encoding
    • intro: CVPR 2017
    • arxiv: [https://arxiv.org/abs/1701.08398]
    • github: [https://github.com/zhunzhong07/person-re-ranking]

实战项目

  1. Open-ReID: Open source person re-identification library in python
    • intro: Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different datasets, a full set of models and evaluation metrics, as well as examples to reproduce [near] state-of-the-art results.
    • project page: [https://cysu.github.io/open-reid/]
    • github[PyTorch]: [https://github.com/Cysu/open-reid]
    • examples: [https://cysu.github.io/open-reid/examples/training_id.html]
    • benchmarks: [https://cysu.github.io/open-reid/examples/benchmarks.html]
  2. caffe-PersonReID
    • intro: Person Re-Identification: Multi-Task Deep CNN with Triplet Loss
    • gtihub: [https://github.com/agjayant/caffe-Person-ReID]
  3. DukeMTMC-reID_baseline Matlab
    • [https://github.com/layumi/DukeMTMC-reID_baseline]
  4. Code for IDE baseline on Market-1501
    • [https://github.com/zhunzhong07/IDE-baseline-Market-1501]

教程

  1. 1st Workshop on Target Re-Identification and Multi-Target Multi-Camera Tracking
    • [https://reid-mct.github.io/]
  2. 郑哲东 -Deep-ReID:行人重识别的深度学习方法
    • PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]
    • 视频:[http://www.bilibili.com/video/av13796843/]
  3. Person Identification in Large Scale Camera Networks Wei-Shi Zheng (郑伟诗)
    • [http://isee.sysu.edu.cn/~zhwshi/Research/ADL-OPEN.pdf\]
  4. Person Re-Identification: Theory and Best Practice
    • [http://www.micc.unifi.it/reid-tutorial/slides/]

综述

  1. Person Re-identification: Past, Present and Future Liang Zheng, Yi Yang, Alexander G. Hauptmann
    • [https://arxiv.org/abs/1610.02984]
  2. Person Re-Identification Book
    • [https://link.springer.com/book/10.1007/978-1-4471-6296-4]
  3. A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets
    • [http://lanl.arxiv.org/abs/1605.09653]
  4. People reidentification in surveillance and forensics: A survey
    • [https://dl.acm.org/citation.cfm?doid=2543581.2543596]

数据集

  1. Re-ID 数据集汇总
    • [https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html]

图像数据集

  1. Market-1501 Dataset 751个人,27种属性,一共约三万张图像(一人多图)
    • [http://www.liangzheng.org/Project/project_reid.html\]
    • Code for IDE baseline on Market-1501 :[https://github.com/zhunzhong07/IDE-baseline-Market-1501]
  2. DukeMTMC-reID DukeMTMC数据集的行人重识别子集,原始数据集地址(http://vision.cs.duke.edu/DukeMTMC/) ,为行人跟踪数据集。原始数据集包含了85分钟的高分辨率视频,采集自8个不同的摄像头。并且提供了人工标注的bounding box。最终,DukeMTMC-reID 包含了 16,522张训练图片(来自702个人), 2,228个查询图像(来自另外的702个人),以及 17,661 张图像的搜索库(gallery)。并提供切割后的图像供下载。
    • [https://github.com/layumi/DukeMTMC-reID_evaluation\]
  3. CUHK01, 02, 03
    • [http://www.ee.cuhk.edu.hk/~rzhao/\]

Attribute相关数据集

  1. RAP
    • [https://link.zhihu.com/?target=http%3A//rap.idealtest.org/]
  2. Attribute for Market-1501and DukeMTMC_reID
    • [https://link.zhihu.com/?target=https%3A//vana77.github.io/]

视频相关数据集

  1. Mars
    • [http://liangzheng.org/Project/project_mars.html]
  2. PRID2011
    • [https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/]

NLP相关数据集:

  1. 自然语言搜图像
    • [http://xiaotong.me/static/projects/person-search-language/dataset.html]
  2. 自然语言搜索行人所在视频
    • [http://www.mi.t.u-tokyo.ac.jp/projects/person_search]

领域专家

  1. Shaogang Gong -[http://www.eecs.qmul.ac.uk/~sgg/\]
  2. Xiaogang Wang
    • [http://www.ee.cuhk.edu.hk/~xgwang/\]
  3. Weishi Zheng
    • [https://sites.google.com/site/sunnyweishi/]
  4. Liang Zheng
    • [http://www.liangzheng.com.cn/]
  5. Chen Change Loy
    • [https://staff.ie.cuhk.edu.hk/~ccloy/\]
  6. Qi Tian
    • [http://www.cs.utsa.edu/~qitian/tian-publication-year.html\]
  7. Shengcai Liao
    • [http://www.cbsr.ia.ac.cn/users/scliao/]
  8. Rui Zhao
    • [http://www.ee.cuhk.edu.hk/~rzhao/\]
  9. Yang Yang
    • [http://www.cbsr.ia.ac.cn/users/yyang/main.htm]
  10. Ling Shao
    • [http://lshao.staff.shef.ac.uk/]
  11. Ziyan Wu
    • [http://wuziyan.com/]
  12. DaPeng Chen
    • [http://gr.xjtu.edu.cn/web/dapengchen/home]
  13. Horst Bischof
    • [https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s]
  14. Niki Martinel
    • [http://users.dimi.uniud.it/~niki.martinel/\]
  15. Liang Lin
    • [http://hcp.sysu.edu.cn/home/]
  16. Le An
    • [http://auto.hust.edu.cn/index.php?a=shows&catid=28&id=134]
  17. Xiang Bai
    • [http://mc.eistar.net/~xbai/index.html\]
  18. Xiaoyuan Jing
    • [http://mla.whu.edu.cn/plus/list.php?tid=2]
  19. Fei Xiong
    • [http://robustsystems.coe.neu.edu/?q=content/research]
  20. DaPeng Chen
    • [http://gr.xjtu.edu.cn/web/dapengchen/home]

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2017-12-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

用循环神经网络进行文件无损压缩:斯坦福大学提出DeepZip

3808
来自专栏专知

【论文推荐】最新六篇机器翻译相关论文—综述、卷积Encoder-Decoder神经网络、字翻译、自编码器、神经短语、RNNs

【导读】专知内容组整理了最近六篇机器翻译(Machine Translation)相关文章,为大家进行介绍,欢迎查看! 1. Machine Translat...

5695
来自专栏WOLFRAM

用 Mathematica 生成迷宫

4914
来自专栏Python疯子

Python强大的pyecharts绘画优美图形<二>

支持保存做种格式 对象.render(path='snapshot.html') 对象.render(path='snapshot.png') 对象.re...

1.5K3
来自专栏数说工作室

文本分析 | 常用距离/相似度 一览

这个系列打算以文本相似度为切入点,逐步介绍一些文本分析的干货,包括分词、词频、词频向量、TF-IDF、文本匹配等等。 第一篇中,介绍了文本相似度是干什么的; 第...

4784
来自专栏yw的数据分析

ONCOCNV软件思路分析之control处理

进行数据初步处理(perl) 统计amplicon的RC(read counts),并且相互overlap大于75%的amplicon合并起来 统计每个ampl...

66511
来自专栏量化投资与机器学习

深度学习代码系列之——Deep Learning Toolbox For Matlab

A Matlab toolbox for Deep Learning Matlab/Octave toolbox for deep learning. I...

4058
来自专栏ml

调参过程中的参数 学习率,权重衰减,冲量(learning_rate , weight_decay , momentum)

无论是深度学习还是机器学习,大多情况下训练中都会遇到这几个参数,今天依据我自己的理解具体的总结一下,可能会存在错误,还请指正. learning_rate , ...

8758
来自专栏人工智能

Stanford提出DeepZip:用循环神经网络进行文件无损压缩!

一、论文摘要 如今,我们生成的数据量大幅增加。新类型的数据,比如基因组数据 [1]、3D-360 度 VR 数据、自动驾驶点云数据已经出现。大量的工作用在了分析...

2585
来自专栏量化投资与机器学习

七步理解深度学习

原文链接请点击阅读原文。 There are many deep learning resources freely available online,but...

2069

扫码关注云+社区

领取腾讯云代金券