专栏首页CDA数据分析师如何区分数据科学家、数据工程师、统计学家和软件工程师
原创

如何区分数据科学家、数据工程师、统计学家和软件工程师

谈到数据科学家、数据工程师、软件工程师和统计学家之间的区别,这可能会令人感到困惑。虽然都与数据有关,但他们的工作内容却存在着根本性差异。

数据的发展及其在整个行业的应用是显而易见的。特别是最近几年,我们可以看到处理和管理数据的角色中有明显的分工。

数据科学无疑是一个正在发展的领域。由于收集和处理数据会带来许多复杂的问题,该领域现在细分为许多不同的职位和角色。如今数据科学家会具体分为数据工程师、数据统计学家和软件工程师等。但除了名称上的不同之外,有多少人真正了解他们所从事工作的区别呢?

在本文中我将解读数据行业中这些不同的角色,当中我主要列举出以下四个角色予以区分。

统计学家

统计学家位于整个数据处理过程的最前沿,运用统计理论解决许多与众多行业有关的实际问题。他们能够独立决定哪些查找和收集数据的方法是可行的。

统计学家通过有意义的方法来部署数据收集,比如设计调查、问卷调查、实验等方法。

他们对数据进行分析和解释,之后将得出的分析见解提供给上级。统计学家需要具备分析和解读数据的能力,并用简单易懂的方式解读复杂的概念。

统计学家通过研究得出的数字,并将这些数字应用到现实生活中。

软件工程师

软件工程师是数据分析过程中的重要组成部分,负责构建系统和应用程序。软件工程师的工作涉及开发测试以及审查系统和应用。他们负责创建最终会产生数据的产品。软件工程是本文提到的四种角色中最老的一种,在数据繁荣发展之前他们就已成为重要的一部分。

软件工程师负责开发前端和后端系统,从而帮助收集和处理数据。这些网络、移动应用通过完美的软件设计实现操作系统的发展。由软件工程师开发应用生成的数据之后会交给数据工程师和数据科学家。

数据工程师

数据工程师致力于开发、构建、测试和维护体系结构,比如大型处理系统或数据库。数据工程师和数据科学家经常混淆的主要区别在于,数据科学家主要负责清洗、组织和查找大数据。

在上文你可能会注意到“清洗”这个词,通过这个词能帮助你更好地理解数据工程师和数据科学家之间的区别。总体来说,这两类专家所付出的努力都是为了用简单易用的格式获取数据,但两者涉及的技术和责任是不同的。

数据工程师负责处理涉及众多机器、人员或仪器错误的原始数据。数据可能包含可疑记录,甚至无法验证。这些数据不仅是非格式化的,而且还包含适用于特定系统的代码。

这时就需要数据工程师的介入。他们不仅提供了提高数据效率、质量和可靠性的方法和技术,还需要实施这些方法。为了处理这种复杂情况,他们需要使用大量工具并掌握各种语言。数据工程师要确保工作架构对于数据科学家是可行的。完成了初始流程后,数据工程师需要将数据交给数据科学家团队进行进一步分析处理。

简单来说,数据工程师通过服务器确保数据流的不间断传输,他们主要负责数据所需的架构。

数据科学家

我们现在已经知道,数据科学家将获得已经由数据工程师处理过的数据。数据已经过清洗和处理,数据科学家可以用这些数据进行分析,以及预测建模。为了构建这些模型,数据科学家需要进行广泛的研究,并从外部和内部数据源积累大量数据,以满足所有业务需求。

一旦数据科学家完成最初的分析阶段,他们必须确保所做的工作是自动化的,所有的分析见解会提供给相关人员。确实值得注意的是,数据科学家和数据工程师所需的技能实际上有点类似。但是这两者在行业中区别逐渐变得明显。

数据科学家需要了解与统计数据、机器学习和数学相关的知识,以确保能够构建准确的预测模型。此外,数据科学家还需要了解关于分布式计算的内容。通过分布式计算,数据科学家将能够获得工程团队处理的数据。数据科学家还需负责将分析结果汇报给公司上级,因此也需要掌握可视化相关内容。

数据科学家利用其分析能力,从输入机器的数据中得出有意义的分析结论。数据领域是正在不断发展,当中涵盖了超过我们想象的可能性。

原文链接:http://bigdata-madesimple.com/the-difference-between-data-scientists-data-engineers-statisticians-and-software-engineers/

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 如何区分数据科学家、数据工程师、统计学家和软件工程师

    作者 Ronald van Loon 编译 Mika 本文为 CDA 数据分析师原创作品,转载需授权 观看更多国外公开课,点击"阅读原文" 谈到数据科学家、...

    CDA数据分析师
  • 过去1年大数据领域薪资有多高?

    互联网在经历前几年的繁荣之后,现在开始进入寒冬,资本家不再像以前那样大胆地投资,纷纷攥紧自己的口袋。但是从整个互联网行业来看,大数据却一枝独秀,逐渐崛起。

    CDA数据分析师
  • 译文|企业大数据应用:5种方式亮瞎你的眼!

    本文由CDA数据分析研究院翻译,译者:王晨光,转载必须获得本站、原作者、译者的同意,拒绝任何不表明译者及来源的转载! 大数据是什么?你所生活的当下就是大数据时代...

    CDA数据分析师
  • 如何区分数据科学家、数据工程师、统计学家和软件工程师

    作者 Ronald van Loon 编译 Mika 本文为 CDA 数据分析师原创作品,转载需授权 观看更多国外公开课,点击"阅读原文" 谈到数据科学家、...

    CDA数据分析师
  • 为何数据科学团队需要通才而非专才

    在“国富论”中,亚当·斯密通过一项钢针工厂流水线的生动例子说明了劳动分工是生产力的主要来源这一观点:“第一个人拔出钢丝,第二个人拉直钢丝,第三个人切割钢丝,第四...

    大数据文摘
  • 【数据科学】成为一个数据科学家的九个步骤

    数据科学和数据分析发展迅速,给该领域带来了众多工作机,但是可用人才匮乏。这给那些想找新工作的人提供了希望。 ? 但是如何才能成为一个数据科学家呢? 首先,每个...

    陆勤_数据人网
  • 大数据的5v特征知多少?

    大数据是指那些超过传统数据库系统处理能力的数据。它的数据规模和转输速度要求很高,或者其结构不适合原本的数据库系统。为了获取大数据中的价值,我们必须选择另一种方式...

    加米谷大数据
  • 企业中的大数据安全问题

    大数据有望大大改善业务运营,并允许组织为每个客户提供量身定制的服务。通过社交媒体和连接的传感器生成的信息量激增,包含了可以转化为有形商业利益的隐藏洞察力模式。这...

    大数据杂货铺
  • 机器学习,数据科学,人工智能,深度学习和统计有何异同

    在本文中,我阐述了数据科学家的各种角色,以及数据科学如何与机器学习,深度学习,人工智能,统计学,物联网,运筹学和应用数学等相关领域进行比较和重叠。 由于数据科学...

    首席架构师智库
  • 谁能做金融业的大数据工程师?

    PPV课大数据 大数据是眼下非常时髦的技术名词,与此同时自然也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。   这群人在国外被...

    小莹莹

扫码关注云+社区

领取腾讯云代金券