专栏首页专知【论文推荐】最新六篇机器翻译相关论文—跨语言推理、单语数据、可扩展工具包、不确定性、合成

【论文推荐】最新六篇机器翻译相关论文—跨语言推理、单语数据、可扩展工具包、不确定性、合成

【导读】专知内容组整理了最近六篇机器翻译(Machine Translation)相关文章,为大家进行介绍,欢迎查看!

1. Baselines and test data for cross-lingual inference(跨语言推理的基准方法和测试数据)



作者:Željko Agić,Natalie Schluter

摘要:The recent years have seen a revival of interest in textual entailment, sparked by i) the emergence of powerful deep neural network learners for natural language processing and ii) the timely development of large-scale evaluation datasets such as SNLI. Recast as natural language inference, the problem now amounts to detecting the relation between pairs of statements: they either contradict or entail one another, or they are mutually neutral. Current research in natural language inference is effectively exclusive to English. In this paper, we propose to advance the research in SNLI-style natural language inference toward multilingual evaluation. To that end, we provide test data for four major languages: Arabic, French, Spanish, and Russian. We experiment with a set of baselines. Our systems are based on cross-lingual word embeddings and machine translation. While our best system scores an average accuracy of just over 75%, we focus largely on enabling further research in multilingual inference.

期刊:arXiv, 2018年3月3日

网址

http://www.zhuanzhi.ai/document/4b58e5327c50fa25df9f3d2a8ef69e4d

2. Joint Training for Neural Machine Translation Models with Monolingual Data(神经机器翻译模型与单语数据的联合训练)



作者:Zhirui Zhang,Shujie Liu,Mu Li,Ming Zhou,Enhong Chen

摘要:Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.

期刊:arXiv, 2018年3月1日

网址

http://www.zhuanzhi.ai/document/6c13d35eadfdec3f27e352a36a677b43

3. XNMT: The eXtensible Neural Machine Translation Toolkit(XNMT:可扩展的神经机器翻译工具包)



作者:Graham Neubig,Matthias Sperber,Xinyi Wang,Matthieu Felix,Austin Matthews,Sarguna Padmanabhan,Ye Qi,Devendra Singh Sachan,Philip Arthur,Pierre Godard,John Hewitt,Rachid Riad,Liming Wang

摘要:This paper describes XNMT, the eXtensible Neural Machine Translation toolkit. XNMT distin- guishes itself from other open-source NMT toolkits by its focus on modular code design, with the purpose of enabling fast iteration in research and replicable, reliable results. In this paper we describe the design of XNMT and its experiment configuration system, and demonstrate its utility on the tasks of machine translation, speech recognition, and multi-tasked machine translation/parsing. XNMT is available open-source at https://github.com/neulab/xnmt

期刊:arXiv, 2018年3月1日

网址

http://www.zhuanzhi.ai/document/ed48d507e460508c475439c40eb5f0e0

4. Analyzing Uncertainty in Neural Machine Translation(分析神经机器翻译中的不确定性)



作者:Myle Ott,Michael Auli,David Granger,Marc'Aurelio Ranzato

摘要:Machine translation is a popular test bed for research in neural sequence-to-sequence models but despite much recent research, there is still a lack of understanding of these models. Practitioners report performance degradation with large beams, the under-estimation of rare words and a lack of diversity in the final translations. Our study relates some of these issues to the inherent uncertainty of the task, due to the existence of multiple valid translations for a single source sentence, and to the extrinsic uncertainty caused by noisy training data. We propose tools and metrics to assess how uncertainty in the data is captured by the model distribution and how it affects search strategies that generate translations. Our results show that search works remarkably well but that the models tend to spread too much probability mass over the hypothesis space. Next, we propose tools to assess model calibration and show how to easily fix some shortcomings of current models. We release both code and multiple human reference translations for two popular benchmarks.

期刊:arXiv, 2018年3月1日

网址

http://www.zhuanzhi.ai/document/990277c476def6ecd1d3bdb72787529f

5. Unsupervised Neural Machine Translation(无监督神经机器翻译)



作者:Mikel Artetxe,Gorka Labaka,Eneko Agirre,Kyunghyun Cho

摘要:In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.

期刊:arXiv, 2018年2月27日

网址

http://www.zhuanzhi.ai/document/c35c1947e05f4d2fcd2e92bfc124e7f1

6. Synthetic and Natural Noise Both Break Neural Machine Translation(合成的和自然的噪声都破坏了神经机器翻译)



作者:Yonatan Belinkov,Yonatan Bisk

摘要:Character-based neural machine translation (NMT) models alleviate out-of-vocabulary issues, learn morphology, and move us closer to completely end-to-end translation systems. Unfortunately, they are also very brittle and easily falter when presented with noisy data. In this paper, we confront NMT models with synthetic and natural sources of noise. We find that state-of-the-art models fail to translate even moderately noisy texts that humans have no trouble comprehending. We explore two approaches to increase model robustness: structure-invariant word representations and robust training on noisy texts. We find that a model based on a character convolutional neural network is able to simultaneously learn representations robust to multiple kinds of noise.

期刊:arXiv, 2018年2月25日

网址

http://www.zhuanzhi.ai/document/3f7e7158db67cf4ceef0107c26cc96f8

本文分享自微信公众号 - 专知(Quan_Zhuanzhi),作者:专知内容组

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-03-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 【论文推荐】最新八篇主题模型相关论文—主题建模优化、变分推断、情绪强度、神经语言模型、搜索、社区聚合、主题建模的问题、光谱学习

    【导读】专知内容组整理了最近八篇主题模型(Topic Model)相关文章,为大家进行介绍,欢迎查看! 1. Application of Rényi and ...

    WZEARW
  • 【论文推荐】最新5篇图像分割相关论文—条件随机场和深度特征学习、移动端网络、长期视觉定位、主动学习、主动轮廓模型、生成对抗性网络

    【导读】专知内容组整理了最近五篇视觉图像分割(Image Segmentation)相关文章,为大家进行介绍,欢迎查看! 1. Conditional Rand...

    WZEARW
  • 【论文推荐】最新六篇图像描述生成相关论文—视频摘要、注意力张量积、非自回归神经序列模型、副词识别、多主体、多样性度量

    【导读】专知内容组整理了最近六篇图像描述生成(Image Caption)相关文章,为大家进行介绍,欢迎查看! 1. Textually Customized ...

    WZEARW
  • 大数据企业想要成为行业巨头的5个要素

    Navin Chaddha是早期阶段风险投资公司Mayfield的总经理。这家公司目前正在投资的一些公司包括Gigya、Elastica、Lyft、MapR和P...

    小莹莹
  • C++核心准则CP.2:避免数据竞争​

    Unless you do, nothing is guaranteed to work and subtle errors will persist.

    面向对象思考
  • 原文|21世纪地理大数据

    By Jeff de La Beaujardière 25 November 2019

    气象学家
  • 数据仓库,就不是数据库了吗?

    A database is a collection of related data which represents some elements of the...

    Lenis
  • 2017年大数据的十大发展趋势

    研究人员称,会有越来越多的公司加速采用大数据技术。互联网数据中心(IDC)预测,到2020年大数据和分析技术市场,将从今年的1301亿美元增加至2030亿美元。...

    华章科技
  • 银行业的大数据:银行如何从客户数据中获得更大的价值?

    36大数据专稿,原文作者:Vaishnavi Agrawal 本文由36大数据翻译组-欧显东翻译。

    华章科技
  • 数据是未来工厂的关键

    大数据文摘

扫码关注云+社区

领取腾讯云代金券