前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[机器学习实战]K-近邻算法

[机器学习实战]K-近邻算法

作者头像
mantou
发布2018-04-16 18:15:58
1.4K0
发布2018-04-16 18:15:58
举报
文章被收录于专栏:mantou大数据mantou大数据

1. K-近邻算法概述(k-Nearest Neighbor,KNN)

K-近邻算法采用测量不同的特征值之间的距离方法进行分类。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

  • 优点:精度高、对异常数据不敏感、无数据输入假定。
  • 缺点:计算复杂度高、空间复杂度高。
  • 适用数据范围:数值型和标称型。

KNN工作原理是:存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。

一般来说我们只选择样本数据集中前k个最相似的数据。通常k是不大于20的整数。最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

代码语言:javascript
复制
KNN的一般流程:

1.收集数据:可使用任何方法。
2.准备数据:距离计算所需要的数值,最好是结构化的数据格式。
3.分析数据:可使用任何方法。
4.训练算法:此步骤不适用与K-近邻算法
5.测试算法:计算错误率。
6.使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

2. 准备数据集

在构造完整的k-近邻算法之前,我们还需要编写一些基本的通用函数,新建KNN.py文件,新增以下代码:

代码语言:javascript
复制
#!/usr/bin/python
# -*- coding: UTF-8 -*-
from numpy import *

"""
函数说明:创建数据集

Parameters:
    无
Returns:
    group - 数据集
    labels - 分类标签
"""
def createDataSet():
    #四组二维特征
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    #四组特征的标签
    labels = ['A','B','C','D']
    return group, labels

if __name__ == '__main__':
    #创建数据集
    group, labels = createDataSet()
    #打印数据集
    print(group)
    print(labels)

3. k-近邻算法实现

对未知类别属性的数据集中的每个点一次执行以下操作:

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离增序排序;
  3. 选取与当前点距离最近的k个点;
  4. 决定这k个点所属类别的出现频率;
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类。
代码语言:javascript
复制
# -*- coding: UTF-8 -*-
from numpy import *
import operator

"""
函数说明:kNN算法,分类器

Parameters:
    inX - 用于分类的数据(测试集)
    dataSet - 用于训练的数据(训练集)
    labes - 分类标签
    k - kNN算法参数,选择距离最小的k个点
Returns:
    sortedClassCount[0][0] - 分类结果
"""
def classify0(inX, dataSet, labels, k):
    #numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    #二维特征相减后平方
    sqDiffMat = diffMat**2
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances = sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances = sqDistances**0.5
    #返回distances中元素从小到大排序后的索引值
    sortedDistIndices = distances.argsort()
    #定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        #取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        #计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    #python3中用items()替换python2中的iteritems()
    #key=operator.itemgetter(1)根据字典的值进行排序
    #key=operator.itemgetter(0)根据字典的键进行排序
    #reverse降序排序字典
    sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]

计算距离时直接使用了欧式距离公式,计算两个向量点之间的距离:

image
image

计算完所有点之间的距离后,可以对数据按照从小到大的次序排序。然后,确定前k个距离最小元素所在的主要分类,输入k总是正整数;最后,将classCount字典分解为元组列表,然后按照第二个元素的次序对元组进行排序,最后返回发生频率最高的元素标签。

预测数据所在分类:

代码语言:javascript
复制
>>> kNN.classify([0, 0], group, labels, 3)

输出结果应该是B。

4. 测试分类器

为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率——分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0,在这种情况下,分类器根本就无法找到一个正确答案。然而错误率几乎不会达到1.0,因为即使是随机猜测,也会有一定概率猜对的。因此,错误率一般存在一个上限,且具体的值会与各类型之间的比例关系直接相关。


[1]KNN维基百科: https://zh.wikipedia.org/wiki/%E6%9C%80%E8%BF%91%E9%84%B0%E5%B1%85%E6%B3%95

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-04-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. K-近邻算法概述(k-Nearest Neighbor,KNN)
  • 2. 准备数据集
  • 3. k-近邻算法实现
  • 4. 测试分类器
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档