简单理解感受野

最近在组会讲解框架时,在感受野这个小知识点,大家开始产生歧义,今天我就简单的给大家讲解下这个小知识点,也给初学者带来一个对Receptive Field崭新的认识,如果对只是有深入了解的你,就可以直接跳过O(∩_∩)O~~!

现在开始进入正题!!!


以前我的理解就是,感受野嘛,其实那就是一个视觉感受区域大小。对于单层网络来说,下一层的一个像素点其感受野大小也就是卷积层滤波器的大小,想想其实很明了的就理解了,但对于多层,那就有一点点(也就那么一点点复杂而已)!

正式定义:

在神经网络中,感受野的定义是:
卷积神经网络的每一层输出的特征图(Feature ap)上的像素点在原图像上映射的区域大小。

自己随便画了一个例图,主要看内容,O(∩_∩)O谢谢!

链接: http://pan.baidu.com/s/1nvMzrOP 密码: 2ehd

有读者说有动图就好了,我就截取了一个,请大家欣赏!

现在就开始来说怎么计算吧!(看点来了)其实很简单!

首先可以简单知道(前面也提及到了),第一层卷积层的输出特征图像素的感受野的大小就等于等于卷积层滤波器的大小;然后其继续进行前向传播,这样的话,后面深层的卷积层感受野大小就和之前所有网络层的滤波器大小和步长有关系了,在计算的时候,忽略图像Padding的大小。网络中的每一个层有一个strides,该strides是之前所有层stride的乘积,即:

查资料知,感受野大小的计算采用从深层到前层的方式计算, 即先计算最深层在前一层上的感受野,然后逐渐反馈到第一层,公式具体记如下:

其中

为得的感受野大小,

为最后层在前一层的感受野大小,

为卷积层滤波器大小。

通过这样反复迭代就可以得到每一层的感受野。具体代码我看网上也有,我就顺便附一下吧,原件请在链接里下载,谢谢!

链接: http://pan.baidu.com/s/1jIHLGJc

密码: ayuc

具体仿真结果我是用Windows版的Python 3.5 (32-bit)运行得到的,具体如下图:

原文发布于微信公众号 - 计算机视觉战队(ComputerVisionGzq)

原文发表时间:2017-06-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

房价会崩盘吗?教你用 Keras 预测房价!(附代码)

书中其中一个应用例子就是用于预测波士顿的房价,这是一个有趣的问题,因为房屋的价值变化非常大。这是一个机器学习的问题,可能最适用于经典方法,如 XGBoost,因...

22120
来自专栏杨熹的专栏

用 TensorFlow 创建自己的 Speech Recognizer

参考资料 源码请点:https://github.com/llSourcell/tensorf... ---- 语音识别无处不在,siri,google,讯飞...

33150
来自专栏大数据

具有mxnetR的前馈神经网络

mxnetR是一个深度学习软件包,可与所有深度学习类型一起使用,包括前馈神经网络(FNN)。FNN具有隐藏层的简单处理单元。

43810
来自专栏AI启蒙研究院

【通俗理解】协方差

13620
来自专栏AI科技评论

大会 | DiracNets:无需跳层连接的ResNet

AI 科技评论按:本文作者 David 9,首发于作者的个人博客,AI 科技评论获其授权转载。 虚拟化技术牺牲硬件开销和性能,换来软件功能的灵活性;深度模型也类...

39660
来自专栏FreeBuf

通过预测API窃取机器学习模型

由于机器学习可能涉及到训练数据的隐私敏感信息、机器学习模型的商业价值及其安全中的应用,所以机器学习模型在一定程度上是可以认为是机密的。但是越来越对机器学习服务提...

59850
来自专栏社区的朋友们

[ I am Jarvis ] :聊聊 FaceID 背后的深度学习视觉算法

在苹果用 FaceID 取代 TouchID 的背后,是强大的视觉算法支持,让 iPhoneX 有能力识别各种欺骗和伪装,从而敢于将 FaceID 作为最重要的...

1.1K20
来自专栏人工智能

使用TensorFlow自动识别验证码(三)

先知安全技术社区独家发表本文,如需要转载,请先联系先知案件技术社区授权;未经授权请勿转载。 0X000 前言 这是该 系列的第三篇文章, 本系列最后一篇。前面几...

29670
来自专栏ATYUN订阅号

Python机器学习的练习六:支持向量机

在这个练习中,我们将使用支持向量机(SVMs)创建一个垃圾邮件分类器。在一些简单的2D数据集上使用SVMs去观察他们如何工作,接下来我们查看一组邮件数据集,并且...

45960
来自专栏计算机视觉战队

CVPR—II | 经典网络再现,全内容跟踪

今天首先给大家带来“YOLO”!也被上一篇“Faith”读者说对了,在此也感谢大家的关注与阅读,O(∩_∩)O谢谢 YOLO ? 看到这个封面,相信很多很多...

37050

扫码关注云+社区

领取腾讯云代金券