前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python MFCC算法

Python MFCC算法

作者头像
Pulsar-V
发布2018-04-18 17:01:19
1.6K0
发布2018-04-18 17:01:19
举报
文章被收录于专栏:Pulsar-VPulsar-V

MFCC(梅尔倒谱系数)的算法思路

  • 读取波形文件
  • 汉明窗
  • 分帧
  • 傅里叶变换
  • 回归离散数据
  • 取得特征数据
  • Python示例代码
代码语言:javascript
复制
import numpy, numpy.fft
 
def mel(f):
    return 2595. * numpy.log10(1. + f / 700.)
 
def melinv(m):
    return 700. * (numpy.power(10., m / 2595.) - 1.)
 
class MFCC(object):
    def __init__(self, nfilt=40, ncep=13,
                 lowerf=133.3333, upperf=6855.4976, alpha=0.97,
                 samprate=16000, frate=100, wlen=0.0256,
                 nfft=512):
        self.lowerf = lowerf
        self.upperf = upperf
        self.nfft = nfft
        self.ncep = ncep
        self.nfilt = nfilt
        self.frate = frate
        self.fshift = float(samprate) / frate
 
        # 构建汉明窗
        self.wlen = int(wlen * samprate)
        self.win = numpy.hamming(self.wlen)
 
        # Prior sample for pre-emphasis
        self.prior = 0
        self.alpha = alpha
 
        # 构建梅尔滤波矩阵
        self.filters = numpy.zeros((nfft/2+1,nfilt), 'd')
        dfreq = float(samprate) / nfft
        if upperf > samprate/2:
            raise(Exception,
                   "Upper frequency %f exceeds Nyquist %f" % (upperf, samprate/2))
        melmax = mel(upperf)
        melmin = mel(lowerf)
        dmelbw = (melmax - melmin) / (nfilt + 1)
        # Filter edges, in Hz
        filt_edge = melinv(melmin + dmelbw * numpy.arange(nfilt + 2, dtype='d'))
 
        for whichfilt in range(0, nfilt):
            # Filter triangles, in DFT points
            leftfr = round(filt_edge[whichfilt] / dfreq)
            centerfr = round(filt_edge[whichfilt + 1] / dfreq)
            rightfr = round(filt_edge[whichfilt + 2] / dfreq)
            # For some reason this is calculated in Hz, though I think
            # it doesn't really matter
            fwidth = (rightfr - leftfr) * dfreq
            height = 2. / fwidth
 
            if centerfr != leftfr:
                leftslope = height / (centerfr - leftfr)
            else:
                leftslope = 0
            freq = leftfr + 1
            while freq < centerfr:
                self.filters[freq,whichfilt] = (freq - leftfr) * leftslope
                freq = freq + 1
            if freq == centerfr: # This is always true
                self.filters[freq,whichfilt] = height
                freq = freq + 1
            if centerfr != rightfr:
                rightslope = height / (centerfr - rightfr)
            while freq < rightfr:
                self.filters[freq,whichfilt] = (freq - rightfr) * rightslope
                freq = freq + 1
#             print("Filter %d: left %d=%f center %d=%f right %d=%f width %d" %
#                   (whichfilt,
#                   leftfr, leftfr*dfreq,
#                   centerfr, centerfr*dfreq,
#                   rightfr, rightfr*dfreq,
#                   freq - leftfr))
#             print self.filters[leftfr:rightfr,whichfilt]
 
        # Build DCT matrix
        self.s2dct = s2dctmat(nfilt, ncep, 1./nfilt)
        self.dct = dctmat(nfilt, ncep, numpy.pi/nfilt)
 
    def sig2s2mfc(self, sig):
        nfr = int(len(sig) / self.fshift + 1)
        mfcc = numpy.zeros((nfr, self.ncep), 'd')
        fr = 0
        while fr < nfr:
            start = round(fr * self.fshift)
            end = min(len(sig), start + self.wlen)
            frame = sig[start:end]
            if len(frame) < self.wlen:
                frame = numpy.resize(frame,self.wlen)
                frame[self.wlen:] = 0
            mfcc[fr] = self.frame2s2mfc(frame)
            fr = fr + 1
        return mfcc
 
    def sig2logspec(self, sig):
        nfr = int(len(sig) / self.fshift + 1)
        mfcc = numpy.zeros((nfr, self.nfilt), 'd')
        fr = 0
        while fr < nfr:
            start = round(fr * self.fshift)
            end = min(len(sig), start + self.wlen)
            frame = sig[start:end]
            if len(frame) < self.wlen:
                frame = numpy.resize(frame,self.wlen)
                frame[self.wlen:] = 0
            mfcc[fr] = self.frame2logspec(frame)
            fr = fr + 1
        return mfcc
 
    def pre_emphasis(self, frame):
        # FIXME: Do this with matrix multiplication
        outfr = numpy.empty(len(frame), 'd')
        outfr[0] = frame[0] - self.alpha * self.prior
        for i in range(1,len(frame)):
            outfr[i] = frame[i] - self.alpha * frame[i-1]
        self.prior = frame[-1]
        return outfr
         
    def frame2logspec(self, frame):
        frame = self.pre_emphasis(frame) * self.win
        fft = numpy.fft.rfft(frame, self.nfft)
        # Square of absolute value
        power = fft.real * fft.real + fft.imag * fft.imag
        return numpy.log(numpy.dot(power, self.filters).clip(1e-5,numpy.inf))
 
    def frame2s2mfc(self, frame):
        logspec = self.frame2logspec(frame)
        return numpy.dot(logspec, self.s2dct.T) / self.nfilt
 
def s2dctmat(nfilt,ncep,freqstep):
    """Return the 'legacy' not-quite-DCT matrix used by Sphinx"""
    melcos = numpy.empty((ncep, nfilt), 'double')
    for i in range(0,ncep):
        freq = numpy.pi * float(i) / nfilt
        melcos[i] = numpy.cos(freq * numpy.arange(0.5, float(nfilt)+0.5, 1.0, 'double'))
    melcos[:,0] = melcos[:,0] * 0.5
    return melcos
 
def logspec2s2mfc(logspec, ncep=13):
    """Convert log-power-spectrum bins to MFCC using the 'legacy'
    Sphinx transform"""
    nframes, nfilt = logspec.shape
    melcos = s2dctmat(nfilt, ncep, 1./nfilt)
    return numpy.dot(logspec, melcos.T) / nfilt
 
def dctmat(N,K,freqstep,orthogonalize=True):
    """Return the orthogonal DCT-II/DCT-III matrix of size NxK.    
    For computing or inverting MFCCs, N is the number of
    log-power-spectrum bins while K is the number of cepstra.
回归正交变换/ dct-iii大小康矩阵。
计算或反相的MFCC,N是多少
对数功率谱箱,而K是倒谱的数量
"""
    cosmat = numpy.zeros((N, K), 'double')
    for n in range(0,N):
        for k in range(0, K):
            cosmat[n,k] = numpy.cos(freqstep * (n + 0.5) * k)
    if orthogonalize:
        cosmat[:,0] = cosmat[:,0] * 1./numpy.sqrt(2)
    return cosmat
 
def dct(input, K=13):
    """Convert log-power-spectrum to MFCC using the orthogonal DCT-II"""
    nframes, N = input.shape
    freqstep = numpy.pi / N
    cosmat = dctmat(N,K,freqstep)
    return numpy.dot(input, cosmat) * numpy.sqrt(2.0 / N)
 
def dct2(input, K=13):
    """Convert log-power-spectrum to MFCC using the normalized DCT-II"""
    nframes, N = input.shape
    freqstep = numpy.pi / N
    cosmat = dctmat(N,K,freqstep,False)
    return numpy.dot(input, cosmat) * (2.0 / N)
 
def idct(input, K=40):
    """Convert MFCC to log-power-spectrum using the orthogonal DCT-III"""
    nframes, N = input.shape
    freqstep = numpy.pi / K
    cosmat = dctmat(K,N,freqstep).T
    return numpy.dot(input, cosmat) * numpy.sqrt(2.0 / K)
 
def dct3(input, K=40):
    """Convert MFCC to log-power-spectrum using the unnormalized DCT-III"""
    nframes, N = input.shape
    freqstep = numpy.pi / K
    cosmat = dctmat(K,N,freqstep,False)
    cosmat[:,0] = cosmat[:,0] * 0.5
    return numpy.dot(input, cosmat.T)
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • MFCC(梅尔倒谱系数)的算法思路
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档