【学习】Spss 聚类分析案例—某移动公司客户细分模型

聚类分析在各行各业应用十分常见,而顾客细分是其最常见的分析需求,顾客细分总是和聚类分析挂在一起。

顾客细分,关键问题是找出顾客的特征,一般可从顾客自然特征和消费行为入手,在大型统计分析工具出现之前,主要是通过两种方式进行“分群别类”,第一种,用单一变量进行划段分组,比如,以消费频率变量细分,即将该变量划分为几个段,高频客户、中频客户、低频客户,这样的状况;第二种,用多个变量交叉分组,比如用性别和收入两个变量,进行交叉细分。

事实是,我们总是希望考虑多方面特征进行聚类,这样基于多方面综合特征的客户细分比单个特征的细分更有意义,这正是SPSS聚类分析可以做到的,以下通过k-means聚类分析做一个小小案例来展示。


【数据来源及分析内容】

《SPSS统计分析高级教程》telco.sav,是反映移动电话用户使用手机情况的数据集。包含7个变量:用户编号、工作日上班时间电话时长、工作日下班时间电话时长、周末电话时长、国际电话时长、总通话时长、平均每次通话时长,现希望对移动用户细分,了解他们不同的手机消费习惯。根据研究调研及经验,认为移动用户应分为5个主要消费群体。数据分析工具:spss,参考教程:张文彤,《 SPSS12 统计分析高级教程》。

【数据分析流程】

【获取数据】

【数据预处理】

现在存储于后台的数据太多了,以前做项目担心没有真实可靠的数据,现在这个问题没有那么复杂,但数据太多却引发了其他问题。辛苦采集到的数据口径不一致,存储格式不同,不符合数据分析要求还有待派生新的变量。

这些过程看似简单却非常有必要!

仅仅预处理以上这些问题还不够,当数据分析方法复杂时,我们还需对采集的数据进行筛选构成小的数据集,对于数据集中变量的分布、缺失、描述统计指标进行一定程度的分析。

【数据分析】

K-means聚类也称快速聚类,可以用于大量数据进行聚类的情形。在开始聚类之前,需要分析者自己制定类数目,并不是一次指定,可以经过多轮反复分析,根据实际情况最终判定最优类的数目。 K-means聚类是采用计算距离的方式测度变量间的亲疏程度,距离直接影响最终的结果,因此慎重审核数据质量。

【分析结论】

做一个数据分析的项目,不能不下结论!

雷声大,雨点小的事情,作为数据分析师千万要避免发生。提交数据分析报告,对分析下结论,对业务问题进行及时解决,养成这个良好的习惯。

参考自:

《SPSS12高级教程》,张文彤

《Clementine数据挖掘方法及应用》,薛薇

采用聚类分析的数据挖掘技术进行电信市场客户分群

电子商城的用户分析运用——客户细分(Customer Segmentation)的相关问题列表!

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2014-05-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

深度学习教父Hinton专访,AI已跨越重要分水岭

【新智元导读】《福布斯》昨日刊登Geoff Hinton专访。游走在学术和产业的AI大神Hinton谈到了自己研究兴趣的起源、在多伦多大学和谷歌所做的研究工作以...

3306
来自专栏CSDN技术头条

入行 AI,如何选个脚踏实地的岗位?

AI原本是一个专业领域,没什么特别的。作为码农一枚,笔者的工作内容正好在这个领域。

1163
来自专栏腾讯高校合作

【犀牛鸟论道】社会传播学的若干课题与实践

社会传播学的若干课题与实践 贺鹏、易玲玲、高瀚、陈川 腾讯微信数据中心社会传播组 [摘要]俗话说“酒香不怕巷子深”,表面上说的是酒香引人,实际上是指好酒在街坊邻...

3425
来自专栏达观数据

干货分享 | 人工智能如何驱动未来教育发展?

ABOUT 1月13日下午,在沪江北京研发中心、沪江智能学习实验室和CCtalk在京举办的“智能引擎,驱动教育”技术沙龙中,达观数据创始人&CEO陈运文作为受邀...

3699
来自专栏大数据挖掘DT机器学习

中文情感分析 (Sentiment Analysis) 的难点在哪?

作者:容哲 假设分析的对象是iphone5s的手机评论。从京东、亚马逊或者中关村都可以找到这款手机的评论。大致都如图所示。 ? 情感分析(Sentimen...

5656
来自专栏AI科技评论

ACL2018 明日墨尔本召开:总体论文接收率 24.7%,两大特邀讲者名单公布

雷锋网 AI 科技评论按:ACL2018 将于 7 月 15 日-7 月 20 日在墨尔本召开,这也是 ACL 第二次登陆澳洲。从 2006 年 ACL 首次在...

672
来自专栏PPV课数据科学社区

2 个月如何从小白到 Python 高手,牛津大学博士带你飞!

Python 可以做任何事情。无论是从入门级选手到专业级数据挖掘、科学计算、图像处理、人工智能,Python 都可以胜任。或许是因为这种万能属性,周围好更多的小...

4076
来自专栏新智元

【十大顶级专家】全球人工智能技术趋势(诺奖得主、KK等)

2015 年发生了机器学习的大事件?这背后折射出什么技术趋势?Edge 从全球 198 个顶尖专家中梳理了科技和技术大事件,新智元从中选择了关于人工智能的部分。...

2994
来自专栏AI科技大本营的专栏

实战案例 | 美团如何用NLP完成5大应用场景

王兴在最近一篇刷屏的专访当中说,“很多人只关心边界,不关心核心”。这话放在人工智能领域当中也适用,今天很多人关心人工智能的前沿论文,但是对于它如何在企业业务中发...

65311
来自专栏月色的自留地

从锅炉工到AI专家(1)

1986

扫码关注云+社区