专栏首页PPV课数据科学社区大数据企业想要成为行业巨头的5个要素

大数据企业想要成为行业巨头的5个要素

Navin Chaddha是早期阶段风险投资公司Mayfield的总经理。这家公司目前正在投资的一些公司包括Gigya、Elastica、Lyft、MapR和Poshmark。

随着2014年下半年的到来,大数据俨然已经成为了一种社会主流,它影响了我们的休闲读物、多个产业的格局和面向消费者的应用等各方各面,同时也左右了大批资本的流向。风险投资行业在过去45年的时间内已经见证过许多技术周期——从PC时代的诞生,到主从式架构计算和基于网络计算的发展,还有云端和SaaS模式的崛起,我们对一家公司从创业阶段发展成行业巨头的模式已经形成了一种固有的认知。

根据我们的观察所得,成为一家基业长青的大数据公司需要具备以下的条件:

1. 从平台向生态系统的转换

要了解一个技术平台是否掌握主导地位,最清晰的方式就是看看这个平台的生态系统建立速度有多快。例如在SaaS时代,Salesforce能够快速成为业界领军的原因正是它拥有一个庞大的生态系统。大数据时代也是一样。

在大数据领域有一家叫做MapR的公司发展十分迅速,它就是一个从平台转换成生态系统的例子。作为一家Hadoop平台的服务商,它是唯一能够将开源(社区创新、便携性和灵活性)的优势体现在独特的平台架构升级的公司,为客户提供企业级的可靠性、安全性和性能。

MapR的生态系统不仅融合了新兴的Hadoop开源社区,而且在MapR App Gallery中迅速扩展合作伙伴的解决方案组合。企业客户可以在这个生态系统当中利用现成的大数据工具和应用轻易地部署和扩展大数据方案。

另外一个例子是MongoDB,这是一个业界领先的开源NoSQL数据库,被多家公司用于各种类型的应用当中。MongoDB正在为各行各业的合作伙伴建立一个大规模的生态系统。

2. 解决没有人愿意处理的棘手问题

这并非大数据世界当中最光彩的部分,然而我们相信这种类型的工作会造就许多大公司。在主从式计算的时代,数据整合先驱Informatica在解决复杂的数据整合难题的过程中逐步成为业界巨头,而且在Gartner Data Integration MagicQuadrant当中占据了连续八年领导地位。

在这个领域值得留意的另外一家公司是Trifacta,它的平台可以帮助技术类和非技术类的分析师将原始数据转换成可执行的数据。

3. 在大数据时代彻底改造商业智能,在获取数据的同时提供分析结果

像BusinessObjects能够帮助行业管理人员获取数据分析的结果,于是它成为了主从式计算时代的行业巨头。我们认为一部分的大数据公司也正在成为像Platfora这样的公司,后者能够在本地部署Hadoop,实现快速获取实时可视化的分析结果。

4. 深入运用专业领域的知识

确保专业领域的宝贵知识能够运用到你的分析应用当中,这样你才能立于不败之地。SAP就是利用这个策略成为了软件行业的巨头。

我们从Palantir这样的大数据分析公司当中看到了这种宝贵的专业知识,这家公司专门为反诈骗和网络安全这些特殊领域提供由人力驱动和机器协助的解决方案,它服务的垂直行业包括国防、保险、医疗和执法等。将机器数据转化成分析结果的Splunk也能体现出这种特质。

5. 利用直观的界面取悦客户

为你的IT和行业客户提供赏心悦目的数据交互界面;理解用户与应用进行交互的方式,不断改进用户体验的细节,做出直观和美观的界面。例如Dropbox在实现了一种简单直观的文件共享方式之后就迅速成长为一家行业巨头,现在它在世界范围内已经拥有超过2亿用户。

能够提供直观界面的大数据公司还包括Tableau,这家公司通过生成可视化内容 查看和理解数据,并从中得出分析结果;还有Elasticsearch,这是一个能够提供快速丰富搜索体验的开源解决方案。

大数据时代的未来

我们还需要关注的另外一个领域是物联网,因为它将会以各种全新的方式提供数据,从而改变技术产业的格局。现在这些数据的来源可以是恒温器、手机和手表,甚至是水杯这样的物品……以后的数据将会来自我们从来没有想过的地方。关于数据的所有权、生命周期和提取的全部观念都要经过重新定义,届时将会催生出一大批新的公司。这将会掀起新一轮的创新大潮,公司会推出一些以前从来没有想象过的全新产品和服务,而现有的产品和服务将会改写。(译:consideRay)

英语原文:

As we enter the second half of 2014, it would be fair to say thatbig data has gone mainstream, attracting coffee table books, multiple industrylandscapes, consumer applications, and large amounts of funding. Having seenmany technology cycles during our 45 years in venture capital — including the birth of the PC era, thetransition to client-server computing and then web-based computing, and theemergence of the cloud and SaaS models — we havepattern recognition on what it takes for a company to go from startup to leader.

Here are some observations we’ve made about what it would take to build a lasting big data company:

1. Transition from a platform to an ecosystem

One of the clearest ways to see whether a technology platform istaking hold is to look at how fast the ecosystem is growing around it. Forexample, in the SaaS era, Salesforce rapidly became a giant because of itsexpansive ecosystem. Big data will be no different.

One thriving big data company that is transitioning from platformto ecosystem is MapR. It is the only distribution for Hadoop that combines thebenefits of open source (community innovation, portability and flexibility)with unique architectural enhancements that provide enterprise-gradedependability, security, and performance.

The MapR ecosystem embraces both the flourishing Hadoop opensource community as well a rapidly expanding portfolio of partner solutions inthe MapR App Gallery. This enables enterprise customers to easily expand andimplement their big data initiatives with ready-made, big data utilities andapplications.

Another example is MongoDB, an open-source and leading NoSQLdatabase used by companies for a wide variety of applications. MongoDB isbuilding a significant ecosystem of partners across industries.

2. Solve the messy, hard problems no one wants to touch

This is not a particularly glamorous part of the big data world;however, we believe that many big companies will be built doing this work. Inthe client-server era, data integration pioneer Informatica became a giant bytackling tough data integration challenges and has maintained its edge by beingpositioned as a leader in the Gartner Data Integration Magic Quadrant eightyears running.

An example of a company to watch in this space is Trifacta, whichenables both technical and non-technical analysts to access and transform rawdata into actionable data.

3. Reinvent business intelligence for the big data age byproviding insights, not just data

Companies such as Business Objects that empowered line of businessexecutives to gain insights grew into giants in the client-server era. Webelieve that a similar class of big data companies are in the making withcompanies such as Platfora, which are built natively on Hadoop and rapidlydeliver insights visually and iteratively.

4. Embed deep domain expertise

Ensure that valuable expertise from your specific domain isembedded into your analytics application so that it cannot be dislodged. SAPbecame a giant in the software industry using this strategy.

We see this valuable domain expertise in big data analyticscompanies such as Palantir which provides human-driven, machine-assistedsolutions for specific use cases like anti-fraud and cybersecurity as well asto vertical industries like defense, insurance, healthcare, & lawenforcement; and Splunk which transforms machine data into insights.

5. Delight your customers with an intuitive interface

Give your IT and line of business customers compelling interfacesto interact with their data. Understand how users interact with yourapplication and invest in the details of the user experience to make itintuitive and delightful. For example, Dropbox became a giant after creating asimple, intuitive approach to file sharing that is now shared by more than 200million users around the world.

Big data companies with intuitive interfaces include Tableau,which can create visualizations to help enterprises easily see, understand andderive insights from their data, and Elasticsearch, the open-source solutionthat offers a fast and rich search experience.

And what’s coming next?

And one more thing, keep your eye on how the Internet of Thingswill transform the landscape by serving up data in all kinds of new forms.Today it’s thermostats, phones, watches, even drinkglasses… tomorrow data will come from places we havenot yet dreamed of. The whole idea of data ownership, lifecycle and ingestionwill have to be rethought, spawning new companies. This will give rise to awave of innovation and companies creating new products and services neverthought of or possible before, and existing ones re-imagined.

本文分享自微信公众号 - PPV课数据科学社区(ppvke123)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2014-09-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 译文:最全的机器学习算法基础知识

    在我们了解了需要解决的机器学习问题的类型之后,我们可以开始考虑搜集来的数据的类型以及我们可以尝试的机器学习算法。在这个帖子里,我们会介绍一遍最流行的机器学习算法...

    小莹莹
  • 4月14日对话吴恩达(Andrew Ng):超级大咖深度解析人工智能的发展现状与未来沙龙实录

    2016年4月14日(周四)21:00 - 22:30 嘉宾: - 吴恩达(Andrew Ng):百度首席科学家,“百度大脑”、“谷歌大脑”负责人,斯坦福大学计...

    小莹莹
  • 大数据有助于预防自杀

    作者:Gil Allouche 翻译:coco 校对:孙强 关键词:大数据 自杀 [大数据文摘翻译] 大数据不只是帮助我们寻找更有效的营销和广告方式 它也使这...

    小莹莹
  • 2017年大数据的十大发展趋势

    研究人员称,会有越来越多的公司加速采用大数据技术。互联网数据中心(IDC)预测,到2020年大数据和分析技术市场,将从今年的1301亿美元增加至2030亿美元。...

    华章科技
  • 【论文推荐】最新六篇机器翻译相关论文—跨语言推理、单语数据、可扩展工具包、不确定性、合成

    【导读】专知内容组整理了最近六篇机器翻译(Machine Translation)相关文章,为大家进行介绍,欢迎查看! 1. Baselines and tes...

    WZEARW
  • 在混合存储系统上调整周期性数据移动的频率(CS)

    新兴的混合内存系统包括英特尔的Optane DC持久内存等技术,它们的异构内存组件在访问速度和容量比方面存在差异。这打破了为传统的仅限dram平台设计的许多假设...

    用户8054111
  • 监狱系统数据分析中的观点和挑战:系统映射

    开放的公共数据使不同的利益相关者能够从不同的角度进行分析和发现信息。从监狱系统中识别和分析数据并不是一项微不足道的任务。研究界需要了解这些数据是如何产生和使用的...

    VasiliaSun
  • 社交媒体公司热门数据抓取者列表

    https://www.technewsworld.com/story/86897.html

    zstt8054929
  • 如何保护数据免受自然灾害的影响

    https://www.technewsworld.com/story/86808.html

    zstt8054929
  • 关于数据集成与准备的技术报告(CS DB)

    AI应用程序开发人员通常开始于感兴趣的数据集,和从手头数据中获得的最终分析或洞察的这份愿景。尽管这是AI工作流程的两个非常重要的组成部分,但其一通常会在我们称为...

    用户8352111

扫码关注云+社区

领取腾讯云代金券