NVIDIA/k8s-device-plugin源码分析

Author: xidianwangtao@gmail.com

k8s-device-plugin内部实现原理图

Kubernetes如何通过Device Plugins来使用NVIDIA GPU中,对NVIDIA/k8s-device-plugin的工作原理进行了深入分析,为了方便我们在这再次贴出其内部实现原理图:

PreStartContainer和GetDevicePluginOptions两个接口,在NVIDIA/k8s-device-plugin中可以忽略,可以认为是空实现。我们主要关注ListAndWatch和Allocate的实现。

启动

一切从main函数开始!核心的代码如下:

func main() {
	log.Println("Loading NVML")
	if err := nvml.Init(); err != nil {
		select {}
	}
    ...
	log.Println("Fetching devices.")
	if len(getDevices()) == 0 {
		select {}
	}

	log.Println("Starting FS watcher.")
	watcher, err := newFSWatcher(pluginapi.DevicePluginPath)
	if err != nil {
		os.Exit(1)
	}
    ...
	log.Println("Starting OS watcher.")
	sigs := newOSWatcher(syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM, syscall.SIGQUIT)

	restart := true
	var devicePlugin *NvidiaDevicePlugin

L:
	for {
		if restart {
			if devicePlugin != nil {
				devicePlugin.Stop()
			}

			devicePlugin = NewNvidiaDevicePlugin()
			if err := devicePlugin.Serve(); err != nil {
				...
			} else {
				restart = false
			}
		}

		select {
		case event := <-watcher.Events:
			if event.Name == pluginapi.KubeletSocket && event.Op&fsnotify.Create == fsnotify.Create {
				restart = true
			}

		case err := <-watcher.Errors:

		case s := <-sigs:
			switch s {
			case syscall.SIGHUP:
				restart = true
			default:
				devicePlugin.Stop()
				break L
			}
		}
	}
}

相关说明不需多说,请参考下面的流程逻辑图:

Serve

k8s-device-plugin启动流程中,devicePlugin.Serve负责启动gRPC Server Start对外提供服务,然后把自己注册到kubelet。

// Serve starts the gRPC server and register the device plugin to Kubelet
func (m *NvidiaDevicePlugin) Serve() error {
	err := m.Start()
	if err != nil {
		log.Printf("Could not start device plugin: %s", err)
		return err
	}
	log.Println("Starting to serve on", m.socket)

	err = m.Register(pluginapi.KubeletSocket, resourceName)
	if err != nil {
		log.Printf("Could not register device plugin: %s", err)
		m.Stop()
		return err
	}
	log.Println("Registered device plugin with Kubelet")

	return nil
}

Start

Start的代码如下:

// Start starts the gRPC server of the device plugin
func (m *NvidiaDevicePlugin) Start() error {
	err := m.cleanup()
	if err != nil {
		return err
	}

	sock, err := net.Listen("unix", m.socket)
	if err != nil {
		return err
	}

	m.server = grpc.NewServer([]grpc.ServerOption{}...)
	pluginapi.RegisterDevicePluginServer(m.server, m)

	go m.server.Serve(sock)

	// Wait for server to start by launching a blocking connexion
	conn, err := dial(m.socket, 5*time.Second)
	if err != nil {
		return err
	}
	conn.Close()

	go m.healthcheck()

	return nil
}

更加深入的代码调用关系,这里不多介绍,直接贴出Start的实现逻辑图:

Start流程中负责创建nvidia.sock文件。

需要特别说明healthcheck部分:

  • healthcheck启动协程对管理的devices进行健康状态监控,一旦发现有device unhealthy,则发送到NvidiaDevicePlugin的health channel。device plugin的ListAndWatch会从health channel中获取这些unhealthy devices,并通知到kubelet进行更新。
  • 只监控nvmlEventTypeXidCriticalError事件,一旦监控到某个device的这个Event,就认为该device unhealthy。关于nvmlEventTypeXidCriticalError的说明,请参考NVIDIA的nvml api文档
  • 可以通过设置NVIDIA device plugin Pod内的环境变量DP_DISABLE_HEALTHCHECKS为”all”来取消healthcheck。不设置或者设置为其他值都会启动healthcheck,默认部署时不设置。

Register

Start之后,接着进入Register流程,其代码如下:

// Register registers the device plugin for the given resourceName with Kubelet.
func (m *NvidiaDevicePlugin) Register(kubeletEndpoint, resourceName string) error {
	conn, err := dial(kubeletEndpoint, 5*time.Second)
	if err != nil {
		return err
	}
	defer conn.Close()

	client := pluginapi.NewRegistrationClient(conn)
	reqt := &pluginapi.RegisterRequest{
		Version:      pluginapi.Version,
		Endpoint:     path.Base(m.socket),
		ResourceName: resourceName,
	}

	_, err = client.Register(context.Background(), reqt)
	if err != nil {
		return err
	}
	return nil
}

Register的实现流程图如下:

  • 注册的Resource Name是nvidia.com/gpu
  • 注册的Version是v1beta1

Stop

Stop的代码如下:

// Stop stops the gRPC server
func (m *NvidiaDevicePlugin) Stop() error {
	if m.server == nil {
		return nil
	}

	m.server.Stop()
	m.server = nil
	close(m.stop)

	return m.cleanup()
}

Stop的实现流程图如下:

  • Stop流程中负责停止gRPC Server,并删除nvidia.sock。

ListAndWatch

ListAndWatch接口主要负责监控health channel,发现有gpu变成unhealthy后,将完成的gpu list信息(ID和health状态)发送给kubelet进行更新。

// ListAndWatch lists devices and update that list according to the health status
func (m *NvidiaDevicePlugin) ListAndWatch(e *pluginapi.Empty, s pluginapi.DevicePlugin_ListAndWatchServer) error {
	s.Send(&pluginapi.ListAndWatchResponse{Devices: m.devs})

	for {
		select {
		case <-m.stop:
			return nil
		case d := <-m.health:
			// FIXME: there is no way to recover from the Unhealthy state.
			d.Health = pluginapi.Unhealthy
			s.Send(&pluginapi.ListAndWatchResponse{Devices: m.devs})
		}
	}
}

ListAndWatch的实现流程图如下:

Allocate

Allocate负责接口kubelet为Container请求分配gpu的请求,请求的结构体如下:

// - Allocate is expected to be called during pod creation since allocation
//   failures for any container would result in pod startup failure.
// - Allocate allows kubelet to exposes additional artifacts in a pod's
//   environment as directed by the plugin.
// - Allocate allows Device Plugin to run device specific operations on
//   the Devices requested
type AllocateRequest struct {
	ContainerRequests []*ContainerAllocateRequest `protobuf:"bytes,1,rep,name=container_requests,json=containerRequests" json:"container_requests,omitempty"`
}

type ContainerAllocateRequest struct {
	DevicesIDs []string `protobuf:"bytes,1,rep,name=devicesIDs" json:"devicesIDs,omitempty"`
}

device plugin Allocate的Response结构体定义如下:

// AllocateResponse includes the artifacts that needs to be injected into
// a container for accessing 'deviceIDs' that were mentioned as part of
// 'AllocateRequest'.
// Failure Handling:
// if Kubelet sends an allocation request for dev1 and dev2.
// Allocation on dev1 succeeds but allocation on dev2 fails.
// The Device plugin should send a ListAndWatch update and fail the
// Allocation request
type AllocateResponse struct {
	ContainerResponses []*ContainerAllocateResponse `protobuf:"bytes,1,rep,name=container_responses,json=containerResponses" json:"container_responses,omitempty"`
}

type ContainerAllocateResponse struct {
	// List of environment variable to be set in the container to access one of more devices.
	Envs map[string]string `protobuf:"bytes,1,rep,name=envs" json:"envs,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"`
	// Mounts for the container.
	Mounts []*Mount `protobuf:"bytes,2,rep,name=mounts" json:"mounts,omitempty"`
	// Devices for the container.
	Devices []*DeviceSpec `protobuf:"bytes,3,rep,name=devices" json:"devices,omitempty"`
	// Container annotations to pass to the container runtime
	Annotations map[string]string `protobuf:"bytes,4,rep,name=annotations" json:"annotations,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"`
}

Allocate的代码实现如下:

// Allocate which return list of devices.
func (m *NvidiaDevicePlugin) Allocate(ctx context.Context, reqs *pluginapi.AllocateRequest) (*pluginapi.AllocateResponse, error) {
	devs := m.devs
	responses := pluginapi.AllocateResponse{}
	for _, req := range reqs.ContainerRequests {
		response := pluginapi.ContainerAllocateResponse{
			Envs: map[string]string{
				"NVIDIA_VISIBLE_DEVICES": strings.Join(req.DevicesIDs, ","),
			},
		}

		for _, id := range req.DevicesIDs {
			if !deviceExists(devs, id) {
				return nil, fmt.Errorf("invalid allocation request: unknown device: %s", id)
			}
		}

		responses.ContainerResponses = append(responses.ContainerResponses, &response)
	}

	return &responses, nil
}

下面是其实现逻辑图:

  • Allocate中会遍历ContainerRequests,将DeviceIDs封装到ContainerAllocateResponse的Envs:NVIDIA_VISIBLE_DEVICES中,格式为:”${ID_1},${ID_2},...
  • 除此之外,并没有封装Mounts, Devices, Annotations。

总结

NVIDIA/k8s-device-plugin的代码中,依赖于nvidia-docker代码库,存在很多golang调用C库的地方,还需要大家自行到[nvml api文档](https://docs.nvidia.com/deploy/nvml-api)中查看相关C函数声明。上一篇博客介绍了Kubernetes如何通过Device Plugins来使用NVIDIA GPU,这篇博客介绍NVIDIA/k8s-device-plugin的代码实现流程,下一篇博客我觉得还有必要对kubelet device plugin manger进行代码分析,如此才能完整的理解整个交互细节。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Python、Flask、Django

Go语言学习之 - 简单的并发程序

11010
来自专栏乐百川的学习频道

JavaFX 简介

JavaFX 介绍 一提到Java的图形界面库,我们通常听到的都是Swing,或者更老一点的AWT,包括很多书上面介绍的也都是这两种。很多学校、培训班教学的也是...

49470
来自专栏生信宝典

CIRCOS圈图绘制 - 最简单绘图和解释

Circos是绘制圈图的神器,在http://circos.ca/images/页面有很多CIRCOS可视化的示例。 ? ? Circos可以在线使用,在线使用...

1.5K90
来自专栏ionic3+

【指令篇】键盘附着指令调整软键盘

现在开始实现这个指令,新建指令之前添加Keyboard插件,一般我们的项目默认已经装上了的,我们只需安装相应的ionic-native子模块:

9020
来自专栏西安-晁州

rabbitmq消息队列——"工作队列"

二、”工作队列” ? 在第一节中我们发送接收消息直接从队列中进行。这节中我们会创建一个工作队列来分发处理多个工作者中的耗时性任务。 工作队列主要是为了避免进行一...

42800
来自专栏自动化测试实战

HTML第四课——Chrome浏览器F12的使用

12930
来自专栏calvin

Quill编辑器介绍及扩展

从这里进入官网. 能找到这个NB的编辑器是因为公司项目需要一个可视化的cms编辑器,类似微信公众号编辑文章。可以插入各种卡片,模块,问题,图片等等。然后插入的内...

68820
来自专栏hbbliyong

使用线程新建WPF窗体(公用进度条窗体)

使用线程新建窗体 项目中需要一个公用的进度条窗体.大家知道在wpf中,有两个线程,一个是UI线程,另一个是监听线程(一直监听用户的输入).如果我们后台有阻塞UI...

451100
来自专栏BinarySec

mmap及linux地址空间随机化失效漏洞

Linux下动态库是通过mmap建立起内存和文件的映射关系。其定义如下void* mmap(void* start,size_t length,int prot...

31410
来自专栏前端吧啦吧啦

手把手教你全家桶之React(二)

42980

扫码关注云+社区

领取腾讯云代金券