【学习】22本数据分析、挖掘的好书推荐——干货分享

1. 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。

难易程度:非常易。

2. 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。

难易程度:非常易。

3. 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。

难易程度:易。

4. 集体智慧编程 (豆瓣) 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。

难易程度:中。

5. Machine Learning in Action (豆瓣) 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: @王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。

难易程度:中。

6. 推荐系统实践 (豆瓣) 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。

难易程度:中上。

7. 数据挖掘导论 (豆瓣) 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。

难易程度:中上。

8. The Elements of Statistical Learning(豆瓣) 这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。

难易程度:难。

9. 统计学习方法 (豆瓣) 李航老师的扛鼎之作,强烈推荐。

难易程度:难。

10. Pattern Recognition And MachineLearning (豆瓣) 经典中的经典。

11. Machine Learning (豆瓣) 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。

12. Bayesian Reasoning and MachineLearning (豆瓣) 看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。

13. Machine Learning for Hackers (豆瓣) 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。

14. Probabilistic Graphical Models (豆瓣) 鸿篇巨制,这书谁要是读完了告诉我一声。

15. Convex Optimization (豆瓣) 凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。

16. Graphical Models, ExponentialFamilies, and Variational Inference (豆瓣) 这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation ofMachine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。

17. Introduction to Semi-SupervisedLearning (豆瓣) 半监督学习必读必看的书。

18. Learning to Rank for InformationRetrieval (豆瓣) 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!

19. Learning to Rank for InformationRetrieval and Natural Language Processing (豆瓣) 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。

20. SciPy and NumPy (豆瓣) 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。

21. Python for Data Analysis (豆瓣) 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强,用pandas做数据分析!

22. Bad Data Handbook (豆瓣) 很好玩的书,作者的角度很不同。

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2014-09-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

【趣味】数据挖掘(3)—Apriori算法-论文引用与数据血统论

本文先通俗地介绍快速挖掘关联规则的Apriori算法,然后介绍发表这一算法的论文(它被引用了11480+次),最后关注此文的实际影响 与 传统影响因子的...

3686
来自专栏ACM算法日常

浅谈ACM算法学习与有效训练

一、什么是有效地训练?   很多ACMer入门的时候,都被告知:要多做题,做500多道就变牛了。其实,这既不是充分条件、也不会是必要条件。   我觉得一般情...

1012
来自专栏测试开发架构之路

全息投影技术及其实现(附素材下载)

免责声明:文章部分内容来源于友站。 (编译:Torres)我们都一直期待能够用智能手机来投射出全息影像,不过显然现在的智能手机早就具备这样的潜质,只不过你还不知...

59112
来自专栏大数据挖掘DT机器学习

五个趣味案例教你数据分析的基本思想

今天和大家分享一下数据分析的一些基本思想,我给它起了个名字叫做用数据说话。 用数据说话,就是用真实的数据说真实的话!真实也可以理解为求真务实。那么,数据分析就是...

4896
来自专栏大数据文摘

改变世界面貌的十个数学公式

2205
来自专栏华章科技

数据分析的基本思想是什么

用数据说话,就是用真实的数据说真实的话!真实也可以理解为求真务实。那么,数据分析就是不断地求真,进而持续地务实的过程!用一句话表达就是用数据说话,用真实的数据说...

1793
来自专栏专知

【经典重读】统计学习那些事

!【导读】 这是杨灿博士在早年写的关于统计学习的一些见解,尤其关于Lasso与Boosting。当年我读博2011年时期间看到这篇文章,也是受益良多。作者文采很...

3203
来自专栏AI科技评论

自然语言处理让人类都懵逼,看谷歌人工智能怎么破

GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,雷锋网将发布“人工智能&机器人Top25创新企...

3565
来自专栏大数据文摘

12位古代数学家的现代化成就

1587
来自专栏机器学习人工学weekly

机器学习人工学weekly-12/3/2017

第一次发内容,就从Hinton老人家的capsules开始吧。注意下面很多链接需要翻墙。 1. Hinton老人家早就看convolution network...

2866

扫码关注云+社区

领取腾讯云代金券