前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >5种最流行的AI编程语言

5种最流行的AI编程语言

作者头像
小莹莹
发布2018-04-20 15:14:11
2.2K0
发布2018-04-20 15:14:11
举报
文章被收录于专栏:PPV课数据科学社区

导读:有没有兴趣来了解更多与AI开发有关的内容? 本文将介绍创建AI程序时可以使用的5种最佳语言。

Python

Python语法简单,功能多样,是开发人员最喜爱的AI开发编程语言之一。 对于开发人员来说,Python在机器学习上的应用非常令人高兴,因为它比C ++和Java等语言要简单。 Python也是一种非常便携的语言,因为它可以在Linux,Windows,Mac OS和UNIX平台上使用。 Python也很受开发人员的欢迎,因为它允许开发人员创建交互式,可解释式性,模块化,动态,可移植和高级的代码,这使得它比Java语言更独特。

另外,Python是一种多范式编程语言,支持面向对象,面向过程和函数式编程风格。 由于它拥有简单的函数库和理想的结构,Python很适合神经网络和自然语言处理(NLP)解决方案的开发。

优势

  1. Python具有丰富多样的库和工具。
  2. 在不必实施的情况下进行算法测试。
  3. Python的面向对象设计提高了开发人员的工作效率。
  4. 与Java和C ++相比,Python在开发中运行速度更快。

缺点

  1. 习惯于使用Python的开发人员在尝试使用其他语言进行AI编程时,难以调整到使用完全不同的语法进行开发。
  2. 与C ++和Java不同,Python在解释器的帮助下运行,在AI开发中这会使编译和执行变的更慢。
  3. 不适合移动计算。

C++

优点

C ++是最快的计算机语言,它特别适用于对时间敏感的AI编程项目。C ++能够提供更快的执行时间和响应时间(这就是为什么它经常用于搜索引擎和游戏)。 此外,C ++允许大规模的使用算法,并且在使用统计AI技术方面非常高效。另一个重要因素是由于继承和数据隐藏,在开发中C ++支持重用代码,因此既省时又省钱。

C ++适用于机器学习和神经网络。

缺点

  1. 多任务处理效果不佳; C ++仅适用于实现特定系统或算法的核心或基础。
  2. C++遵循自下而上的方法,因此非常复杂。

Java

Java也是一种多范式语言,遵循面向对象的原则和一次编写、到处运行(WORA)的原则。Java是一种可在任何支持它的平台上运行的AI编程语言,而无需重新编译。

除了AI开发,Java也是最常用的语言之一,兼容了C和C ++中的大部分语法。 Java不仅适用于自然语言处理和搜索算法,并且还适用于神经网络。

LISP

优点:

Lisp是计算机编程语言家族中继Fortran之后的第二种最古老的编程语言。 随着时间的推移,LISP已经发展成为一门强大且动态的编程语言。

有些人认为Lisp是最好的AI编程语言,因为它为开发人员提供了自由。在AI开发中使用Lisp语言,是因为它的灵活性使快速建模和实验成为可能,这反过来又促进了Lisp在AI开发中的发展。例如,Lisp有一个独特的宏观系统,可以帮助探索和实现不同层次的智能。

与大多数AI编程语言不同,Lisp在解决特定问题方面效率更高,因为它能够适应开发人员编写解决方案的需求。Lisp非常适合于归纳逻辑项目和机器学习。

缺点:

  1. 很少有开发人员熟悉Lisp编程。
  2. 作为一种古老的编程语言,Lisp需要配置新的软件和硬件以适应在当前环境下使用。

Prolog

Prolog也是最古老的编程语言之一,因此它也适用于AI的开发。 像Lisp一样,它也是主要的AI编程语言。Prolog的机制能够开发出受开发人员欢迎的较为灵活的框架。Prolog是一种基于规则和声明的语言,这是因为它具有规定AI编程语言的事实和规则。

Prolog支持基本机制,如模式匹配,基于树的数据结构以及AI编程所必需的自动回溯。除了广泛应用于AI项目之外,Prolog也应用于创建医疗系统。

END.

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-03-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PPV课数据科学社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档