专栏首页PPV课数据科学社区【学习】用R语言进行数据可视化的综合指南

【学习】用R语言进行数据可视化的综合指南

让我们快速浏览一下这张图表:

这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例子。想象一下,如果这些信息通过表格来告诉投资者,你认为你会花多长时间来向他解释?

如今的世界里,随着数据量的不断增长,很难不用可视化的形式来呈现你数据里的全部信息。虽然有专门的工具,如Tableau, QlikView 和 d3.js,但没有任何东西能代替有很好可视化能力的建模/统计工具。尤其是它有助于做若干探索性数据分析和特征化工程。这就是R语言,它提供了令人难以置信的帮助。

R语言提供了令人满意的一套内置函数和库(如 ggplot2, leaflet, lattice)用来建立可视化效果以呈现数据。在本文中,我已经涉及了用R语言编程来创建既常见又先进的可视化效果的步骤。但是,在介绍那些之前,让我们快速浏览一下数据可视化简史。如果您对历史不感兴趣,没问题,您可以跳到下一节。

数据可视化简史

从历史来看,数据可视化的进化已经被著名的从业者在工作中完成了。威廉.普莱菲(William Playfair)是统计图形化方法的创始人。威廉.普莱菲发明了四种类型的图表:线图、经济学数据的柱状图、饼状图和圆图。约瑟夫·普里斯特利(Joseph Priestly)创建了第一个划时代的时间线图,其中的每一个柱形是用来显示一个人的寿命(1765)。没错,时间线图被发明于250年前,而不是Facebook发明的!

最著名的早期可视化数据是由Charles Minard所描绘的Napoleon’s March(俄法战争)。可视化数据中包含了随着时间的变化,气温对拿破仑入侵俄国产生广泛影响的信息。在图形中,值得注意的是,在二个维度上的六种类型数据,分别表示:拿破仑军队的数量,距离,温度,纬度和经度,行军方向和跟特定日期有关的位置。

弗洛伦斯·南丁格尔(Florence Nightangle)也是数据可视化的先驱。她用数据图表的方式描述了疾病对军队的死亡率的影响(1858)。琼恩·雪诺(John Snow)(不是《权力的游戏》里的人物)是把地图用在图表和空间分析的先驱。在1854年的伦敦,用这地图发现了霍乱疫情的源头与公共水泵有关,信息图帮助精确定位爆发源到某一个泵的位置。

用R语言进行数据可视化

在这篇文章中,我们将创建以下可视化效果:

基本可视化效果

1. 直方图

2. 条形图/线型图

3. 箱式图

4. 散点图

高级可视化效果

1. 热点图

2. 影像镶嵌图

3. 地图可视化

4. 3维图

5. 相关图

R语言 小窍门:

HistData软件包提供了一个小数据集,它很有趣并且在统计和数据可视化的历史上很重要。

基本可视化效果

便签:

  1. 基本图形可以很容易地用R语言进行创建。绘图(plot)命令是要关注的命令。

2. 它的参数有x轴数据、y轴数据、x轴标签、y轴标签、颜色和标题。要创建线图,只需简单地使用参数,类型选择为l。

3. 如果你想要箱式图,你可以选用箱式图(boxplot),要条形图就用条形图函数。

1.直方图

基本上,直方图是将数据分解为一个个的小格子(或间隔),并显示它们的频率分布。您可以更改间隔,看看这样做对数据可视化可理解性的影响。

给您举个例子。

注意:我们使用的par(mfrow=c(2,5))命令,为的是清晰地把多个图放在同一页上(参看下面的代码)。

library(RColorBrewer)

data(VADeaths)

par(mfrow=c(2,3))

hist(VADeaths,breaks=10, col=brewer.pal(3,"Set3"),main="Set3 3 colors")

hist(VADeaths,breaks=3 ,col=brewer.pal(3,"Set2"),main="Set2 3 colors")

hist(VADeaths,breaks=7, col=brewer.pal(3,"Set1"),main="Set1 3 colors")

hist(VADeaths,,breaks= 2, col=brewer.pal(8,"Set3"),main="Set3 8 colors")

hist(VADeaths,col=brewer.pal(8,"Greys"),main="Greys 8 colors")

hist(VADeaths,col=brewer.pal(8,"Greens"),main="Greens 8 colors")

请注意,如果间隔数少于被指定的颜色数,颜色会变成极值,如上图中的“Set3 8 colors”图。如果间隔数目超过了颜色的数目,则颜色会开始像在第一行中一样地重复出现。

2.条形图/线型图

线型图

下面的折线图显示了在给定时间内飞机乘客数的增长情况。折线图通常是分析一段时间内延伸趋势的首选。此外,当我们需要比较数量随着某种变量(例如时间)的相对变化时,线型图也是适用的。下面是代码:

plot(AirPassengers,type="l") #Simple Line Plot

条形图

条形图适用于显示跨几个组别的累计汇总之间的比较。层叠图用于跨类别的条形图。下面是代码:

barplot(iris$Petal.Length) #Creating simple Bar Graph

barplot(iris$Sepal.Length,col = brewer.pal(3,"Set1"))

barplot(table(iris$Species,iris$Sepal.Length),col = brewer.pal(3,"Set1")) #Stacked Plot

3. 箱式图

箱式图显示5个有统计学意义的数字,分别是最小数、第一四分数位、中位数、第三四分位数和最大数。因此,它在数据延伸的可视化上非常有用,还能得出相应的推论。下面是简单的代码:

boxplot(iris$Petal.Length~iris$Species) #Creating Box Plot between two variable

让我们来理解下面的代码:

在下面的例子中,我在屏幕上显示了4个图。通过使用~符号,我可以将(萼片的长度)的伸展是如何跨各种类别(的物种)进行可视化。我在最后的两个图中演示了调色板。调色板是一组颜色,用来使图标更有吸引力,而且能帮助在数据中创建醒目的区别。

data(iris)

par(mfrow=c(2,2))

boxplot(iris$Sepal.Length,col="red")

boxplot(iris$Sepal.Length~iris$Species,col="red")

oxplot(iris$Sepal.Length~iris$Species,col=heat.colors(3))

boxplot(iris$Sepal.Length~iris$Species,col=topo.colors(3))

要了解更多关于R语言中调色板的使用,请参看http://decisionstats.com/2011/04/21/using-color-palettes-in-r/

4. 散点图(包括3D等功能

散点图有助于轻松地把数据可视化和进行简单的数据检查。这里有简单散点图和多元散点图的代码:

plot(x=iris$Petal.Length) #Simple Scatter Plot

plot(x=iris$Petal.Length,y=iris$Species) #Multivariate Scatter Plot

散点图矩阵可以帮助将彼此交叉的多个变量可视化。

plot(iris,col=brewer.pal(3,"Set1"))

您可能会想,我还没有把饼图列表成基本图形。这不是失误,而是我故意这么做的。这是因为,数据可视化专业人员不赞成使用饼图来表示数据。因为人的眼睛不能像目测线性距离那样精确地目测出圆的距离。只需要简单地把任何可用饼图表示的东西都用线图表示。但是,如果你喜欢饼图,可使用:

pie(table(iris$Species))

到这里为止,我们已经学过的所有图表列表如下:

您可能已经注意到,在一些图表中,他们的标题已被截断,因为我把太多图表放在同一个屏幕上。要改变这一点,你只需要改变par函数的‘mfrow’参数。

高级可视化效果

什么是Hexbin Binning?

如果在同一个地方有很多点(overplotting),我们可以使用Hexbin包。六边形面元划分是一种二元直方图,对大数量级结构的数据集的可视化非常有用。下面是代码:

>library(hexbin)

>a=hexbin(diamonds$price,diamonds$carat,xbins=40)

>library(RColorBrewer)

>plot(a)

我们也可以创建一个调色板,然后用Hexbin绘图功能以获得更好的视觉效果。下面是代码:

>library(RColorBrewer)

>rf <- colorRampPalette(rev(brewer.pal(40,'Set3')))

>hexbinplot(diamonds$price~diamonds$carat, data=diamonds, colramp=rf)

马赛克拼图

马赛克拼图可以通过数据所占据的面积大小来有效地显示分类数据的相对比例。

> data(HairEyeColor)

> mosaicplot(HairEyeColor)

热图

热图使你能够以两个维度为轴,颜色的强度为第三个维度来进行探索性的数据分析。然而,你需要将数据集转化成矩阵形式。下面是代码:

> heatmap(as.matrix(mtcars))

您也可以使用image()命令做这种类型的可视化:

> image(as.matrix(b[2:7]))

如何汇总大量数据?

您可以使用tabplot包中的tableplot功能,快速汇总大量数据

地图可视化

R语言中最新的东西是通过Javascript库来进行数据可视化。Leaflet是JavaScript开源库中最受欢迎的一个库,用于互动地图。有关它的内容,请参考https://rstudio.github.io/leaflet/。

您可以用下面的代码直接从github安装Leaflet。

devtools::install_github("rstudio/leaflet")

制作上述地图的代码是非常简单的:

library(magrittr)

library(leaflet)

m <- leaflet() %>%

addTiles() %>% # Add default OpenStreetMap map tiles

addMarkers(lng=77.2310, lat=28.6560, popup="The delicious food of chandni chowk")

m # Print the map

3维图

用R语言的的功能让人闪瞎眼的最简单的方法之一是通过创建一张3维图,而不需要用R语言写一行代码,并且在3分钟内就能完成。这样要求是不是太过分呢?

我们使用R Commander包作为图形用户界面(GUI)。操作步骤如下:

1. 只需安装Rcmdr包

2. 使用来自图中的3D绘图选项

下面的代码不是用户输入的,是自动生成的。

便签:当我们交换图的坐标轴时,您应该看到有着相应代码的图,我们是如何使用xlab和ylab来传递轴标签,图标题用Main函数,颜色是col参数。

>data(iris, package="datasets")

>scatter3d(Petal.Width~Petal.Length+Sepal.Length|Species, data=iris, fit="linear"

>residuals=TRUE, parallel=FALSE, bg="black", axis.scales=TRUE, grid=TRUE, ellipsoid=FALSE)

您还可以使用Lattice包来做3维图。Lattice也可以用于xyplot。下面是代码:

>attach(iris)# 3d scatterplot by factor level

>cloud(Sepal.Length~Sepal.Width*Petal.Length|Species, main="3D Scatterplot by Species")

>xyplot(Sepal.Width ~ Sepal.Length, iris, groups = iris$Species, pch= 20)

相关图(GUIs)

相关图帮助我们把相关矩阵内的数据可视化。下面是代码:

> cor(iris[1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411

Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259

Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654

Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

> corrgram(iris)

R语言有三个主要的GUI包。RCcommander和KMggplot及Rattle用于数据挖掘,Deducer用于数据可视化。这些有助于自动完成多个工作。

结束语

我真的享受写这篇文章,R语言所用到的各种方式使得它成为世界上最好的数据可视化软件。Python也许在Seaborn(译者注:Seaborn是python中基于matplotlib的统计绘图模块)和ggplot(译者注:ggplot是用于绘图的R语言扩展包在Python的移植)上获得进展,而没有什么能打败在统计数据可视化上拥有绝对数量巨大软件包的R语言。

我在本文中已经讨论了各种形式的可视化,是通过用R语言编程实现从基础到高级的有助于展示数据的图表。

原文链接:http://www.analyticsvidhya.com/blog/2015/07/guide-data-visualization-r/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+AnalyticsVidhya+%28Analytics+Vidhya%29

PPV课其他精彩文章:


1、回复“干货”查看干货 数据分析师完整知识结构

2、回复“答案”查看大数据Hadoop面试笔试题及答案

3、回复“设计”查看这是我见过最逆天的设计,令人惊叹叫绝

4、回复“可视化”查看数据可视化专题-数据可视化案例与工具

5、回复“禅师”查看当禅师遇到一位理科生,后来禅师疯了!!知识无极限

6、回复“啤酒”查看数据挖掘关联注明案例-啤酒喝尿布

7、回复“栋察”查看大数据栋察——大数据时代的历史机遇连载

8、回复“数据咖”查看数据咖——PPV课数据爱好者俱乐部省分会会长招募

9、回复“每日一课”查看【每日一课】手机在线视频集锦

PPV课大数据ID: ppvke123 (长按可复制)

大数据人才的摇篮!专注大数据行业人才的培养。每日一课,大数据(EXCEL、SAS、SPSS、Hadoop、CDA)视频课程。大数据资讯,每日分享!数据咖—PPV课数据爱好者俱乐部!

本文分享自微信公众号 - PPV课数据科学社区(ppvke123)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2015-08-31

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 基于 Python 的数据可视化

    来源:bea_tree 英文:kaggle 链接:blog.csdn.net/bea_tree/article/details/50757338 原文采用了...

    小莹莹
  • 用Python进行数据可视化的10种方法

    编译|黄念 校对|丁一 引言 艺术之美根植于其所传达的信息。有时候,现实并非我们所看到或感知到的。达芬奇(Da Vinci)和毕加索(Picass...

    小莹莹
  • 【学习】R语言书籍导读-入门到高级电子书下载推荐

    R语言的资料非常多,R语言的书籍也聆郎满目啊。如何选择R语言书籍阅读呢?在此,我给大家分享一张自己做的R语言书籍导读的心智图。 ? 这个心智图,一共包括预备知...

    小莹莹
  • R语言数据可视化综合指南

    让我们快速浏览一下这张图表: ? 这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例子。想象一下,如果这些信息通过...

    CDA数据分析师
  • 用R语言进行数据可视化的综合指南(一)

    大数据文摘
  • 特征锦囊:怎么简单使用LDA来划分数据且可视化呢?

    从可视化可以看出做了LDA的数据类别区分度还是比较明显的,而且效果和PCA的差不多,相比原始的还是有很明显的效果。

    Sam Gor
  • 机器学习——KNN算法总结

    用户5745385
  • 人人都会用的可视化数据分析平台来了

    引言 我们知道,Watson Analytics 能够提供自动数据获取、数据探索、讲故事及向导式的预测分析功能,它能帮助无 IT 经验的业务用户不论何时何地,都...

    CDA数据分析师
  • 论文绘图软件介绍

    众所周知,高水平的配图可以令论文、报告等显得耳目一新,瞬间提高一个档次。写文章、做报告,搞好配图已经成为了又一项标配技能。从大量的数据资料中获得所需的效果图,已...

    魏晓蕾
  • 7.1.Maven核心知识@module和parent标签的填写方式

    都知道,maven项目间依赖是双向绑定的(这个是自己瞎说的词,自己理解起来比较容易),即像树结构一样,一个子模块只能有一个父模块,父下面有多个子。子模块使用...

    itjim

扫码关注云+社区

领取腾讯云代金券