前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >浅谈数据处理中的相关分析

浅谈数据处理中的相关分析

作者头像
小莹莹
发布2018-04-20 18:30:10
1.1K0
发布2018-04-20 18:30:10
举报
文章被收录于专栏:PPV课数据科学社区
大数据的发展经历了从因果分析到相关分析的转变。宏观上来讲,如果两个事务存在某种统计学意义上的依赖性就称两者具有相关性。这里我们就简单聊聊各种相关分析的方法。

1 先以电商中的商品推荐为例,来看看最基本的相关分析方法:

我们经常会用到的比如计算两个商品的相似度,或计算两个用户之间的相似度,如下图所示,是基于商品的购买行为,来计算两个商品之间的相似程度。我们先基于此例来说明。这里每个商品可以表示成用户购买行为的特征向量,其中1表示此用户购买,0表示此用户未购买。

设商品a的特征向量为向量A, 商品b的特征向量为向量B,那么常用的计算相关性的方法有以下:

Jaccard相关是基于计算集合之间的相似度方法,而Cosine和Pearson都属于积差相关的范畴。通过简单对比,我们看得出A和B的Pearson相关系数就是向量A和B归一化后再计算Cosine相关系数的结果。

2 等级相关分析

如果在某些情况下,我们不需要顾及计算向量中值的相对大小,那么还可以计算等级相关性系数,如Spearman等级相关和Kendall等级相关等。等级相关没有积差相关要求那样严格,相同的情况下,等级相关的精确度要低于积差相关。

3 偏相关分析

如果我们想除去共同噪声的影响,可以选择偏相关分析的方法(在频域上叫偏相干)。其结果与先回归掉噪声再计算相关的结果是一样的。

4 频域上的相关分析

如果我们的处理对象是时间序列,除了以上谈到的方法外,我们还可以度量频域上的相关性,如使用相干谱分析的方法,如小波相干等。即您可以得到不同时间点不同频率上的线性相关性系数,同时还可以平衡时间和空间上的分辨率。

但是在什么情况下,要选用哪个的相关性系数呢?

如果有时间建议大家不妨多做些实验,而且要定期做,因为数据集的变化(稀疏度、噪声等因素)可能导致相似度指标效果的变化。比如对于一个电商平台的商品推荐系统,初期时可能使用方法x效果最好,当用户数逐渐增加,商品越来越丰富,可能方法y效果最好,直到系统越来越复杂,可能这时方法z是最好的了。所以建议定期做些离线试验来选择此时效果最好的方法。

我们常用的如Jaccard相关, Cosine相关,Pearson 相关都是属于线性相关的范畴,复杂的还有非线性相关的方法,如多谱分析,互信息等。但这些在我们电商的场景中很少用到。

来源:京东大数据

1、回复“数据分析师”查看数据分析师系列文章

2、回复“案例”查看大数据案例系列文章

3、回复“征信”查看相关征信的系列文章

4、回复“可视化”查看可视化专题系列文章

5、回复“SPPS”查看SPSS系列文章

6、回复“答案”查看hadoop面试题题目及答案

7、回复“爱情”查看大数据与爱情的故事

8、回复“笑话”查看大数据系列笑话

9、回复“大数据1、大数据2、大数据3、大数据4”查看大数据历史机遇连载

PPV课大数据ID: ppvke123 (长按可复制)

大数据人才的摇篮!专注大数据行业人才的培养。每日一课,大数据(EXCEL、SAS、SPSS、Hadoop、CDA)视频课程。大数据资讯,每日分享!数据咖—PPV课数据爱好者俱乐部!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2015-10-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PPV课数据科学社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档