【学习】应该在什么时候使用Hadoop?

有人问我,“你在大数据和Hadoop方面有多少经验?”我告诉他们,我一直在使用Hadoop,但是我处理的数据集很少有大于几个TB的。

他们又问我,“你能使用Hadoop做简单的分组和统计吗?”我说当然可以,我只是告诉他们我需要看一些文件格式的例子。

他们递给我一个包含600MB数据的闪盘,看起来这些数据并非样本数据,由于一些我不能理解的原因,当我的解决方案涉及到pandas.read_csv文件,而不是Hadoop,他们很不愉快。

Hadoop实际上是有很多局限的。Hadoop允许你运行一个通用的计算,下面我用伪码进行说明:

目标:计算图书馆书籍的数量

Map:你统计奇数书架上书的数量,我统计偶数书架上书的数量。(人越多,统计越快)

Reduce:把我们单独统计后的数据加在一起。

我们所做的只有两个:F(k,v)和G(k,v),除开在中间步骤中的性能优化,一切都是固定的。

它会迫使你在Map中进行所有的计算,分组和统计,执行运算的方式像是穿上了紧身衣,其实很多计算更适合选用其它模型。穿上紧身衣的唯一原因是这可能会扩展到非常大的数据集上,而大多数情况下,你的数据量可能会小几个数量级。

但是由于“大数据”和“Hadoop”这两个热门词,即使很多人实际上不需要Hadoop,他们也愿意穿上“紧身衣”。

一、如果我的数据量是几百兆,Excel可能没法加载它

对于Excel软件来说的“很大的数据”并非大数据,其实还有其它极好的工具可以使用——我喜欢的Pandas。Pandas构建于Numpy库之上,可以以矢量格式的方式有效地把数百兆的数据载入到内存中。在我购买已3年的笔记本上,它可以用Numpy在一眨眼的功夫把1亿的浮点数乘在一起。Matlab和R也是极好的工具。

对于几百兆的数据量,典型的做法是写一个简单的Python脚本按行读取文件行,并处理它,向另一个文件写入。

二、如果我的数据是10GB呢

我买了个新笔记本,它有16GB的内存和256GB的SSD。如果你要载入一个10GB的CSV文件到Pandas,它占用的内存实际上是很小的——其结果是以数字类型的字符串保存的,如“17284832583”作为4字节货8字节的整数,或存储“284572452.2435723”字符串作为8字节的双精度浮点数。

最坏的情况是你或许不能把所有的数据都同时载入到内存中。

三、如果我的数据是100GB、500GB或1TB呢

买个2TB或4TB的硬盘,在桌面PC或服务器上安装一个Postgre来解决它。

四、Hadoop远远比不上SQL或Python脚本

在计算的表达方面,Hadoop弱于SQL,也弱于Python脚本。

SQL是一个很直接的查询语言,适合做业务分析,SQL的查询相当简单,而且还非常快——如果你的数据库使用了正确的索引,二级查询或多级查询另当别论。

Hadoop没有索引的概念,Hadoop只有全表扫描,Hadoop有高度泄露抽象——我花了很多时间来处理Java的内存错误、文件碎片以及集群竞争,这些时间远大于我花在数据分析上的时间。

如果你的数据并不是像SQL表那样的结构化数据(比如纯文本、JSON对象、二进制对象),通常是直接写一个小的Python脚本来按行处理你的数据。把数据存储于文件,处理每一个文件,等等。如果换成是Hadoop就很麻烦。

相比于SQL或Python脚本,Hadoop要慢的多。正确的使用索引后,SQL查询总是非快——PostgreSQL简单的查找索引,检索确切的键值。而Hadoop是全表扫描的,它会把整个表进行重新排序。通过把数据表分片到多台计算机上后,重排序是很快的。另一方面,处理二进制对象,Hadoop需要重复往返于命名节点,目的是查找和处理数据。这适合用Python脚本来实现。

五、我的数据超过了5TB

你应该考虑使用Hadoop,而无需做过多的选择。

使用Hadoop唯一的好处是可伸缩性非常好。如果你有一个包含了数TB数据的表,Hadoop有一个适合全表扫描的选项。如果你没有这样大数据量的表,那么你应该像躲避瘟疫那样避免使用Hadoop。这样使用传统的方法来解决问题会更轻松。

六、Hadoop是一个极好的工具

我并不讨厌Hadoop,当我用其它工具不能很好处理数据时我会选择Hadoop。另外,我推荐使用Scalding,不要使用Hive或Pig。Scalding支持使用Scala语言来编写Hadoop任务链,隐藏了其下的MapReduce。

作者:chszs

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2015-02-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据和云

数据库时间出现'0000/00/00',难道我穿越了?

前几天有个朋友遇到一个问题,在做日期类型数据的运算的时候出现了‘0000-00-00’的结果,不得其解。你是否遇到过同样的问题呢?这样一个并不存在的时间点,难道...

3206
来自专栏牛肉圆粉不加葱

Spark Sql 源码剖析(一):sql 执行的主要流程

之前写过不少 Spark Core、Spark Streaming 相关的文章,但使用更广泛的 Spark Sql 倒是极少,恰好最近工作中使用到了,便开始研读...

2661
来自专栏PPV课数据科学社区

【学习】在Python中利用Pandas库处理大数据的简单介绍

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,...

4287
来自专栏数据科学与人工智能

【Spark研究】极简 Spark 入门笔记——安装和第一个回归程序

现在的各种数据处理技术更新换代太快,新的名词和工具层出不穷,像是 Hadoop 和 Spark 这些,最近几年着实火了一把,但自己一直没精力和时间去尝试和学习。...

31710
来自专栏扎心了老铁

hadoop streaming编程小demo(python版)

大数据团队搞数据质量评测。自动化质检和监控平台是用django,MR也是通过python实现的。(后来发现有orc压缩问题,python不知道怎么解决,正在改成...

4424
来自专栏数据科学与人工智能

【Python环境】使用Python Pandas处理亿级数据

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hado...

3095
来自专栏斑斓

使用Python Pandas处理亿级数据

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hado...

1.3K5
来自专栏大数据技术学习

大数据初学 或Java工程师怎么转大数据?大数据基础技术学习路线图

1.数据在体量方面很大,比如说文字,有各种各样的来源,有电子书|实体书|杂志|报刊等,它们的数据大吧。

2010
来自专栏PingCAP的专栏

TiDB 源码阅读系列文章(八)基于代价的优化

本文会先简单介绍制定查询计划以及优化的过程,然后用较大篇幅详述在得到逻辑计划后,如何基于统计信息和不同的属性选择等生成各种不同代价的物理计划。

3.8K10
来自专栏IT派

使用 Pandas 处理亿级数据

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hado...

1434

扫码关注云+社区

领取腾讯云代金券