【学习】如何成长为顶级数据分析师和数据挖掘师?

#玩转大数据#12点的钟声敲响后,意味着已经跨过2015,进入2016了。新的一年应该拥有新的开端以及新的计划目标,也标志着新的希望。一个数据科学家在年尾做了一个如何成长为顶级数据分析师和数据挖掘师的计划。根据发展阶段的不同,我在此给大家分享一些每个数据科学家都应该做的新年计划。可能这个计划会相对宽泛,大家可以根据自己的需求去调整和补充。

一名数据科学家的新年计划

根据数据科学家一生的三个发展阶段,我将这些计划做了分类。大家可以自己判断哪些计划适合自己并按照计划行动起来。如果你已经成功地完成了现有阶段的任务,就可以转向下一阶段。我还列出了现有的有关该主题的最佳课程。

初级水平

什么是初学者?——如果解析学和数据科学对你来说是全新的领域,你也不知该行业的发展模式,而你又想在这个行业大展拳脚一番,那么初学者就是你。以下这些应该在你的计划之内。

1. R语言也好,Python语言也好,学习一门新的编程语言

我曾见到有同学同时学习R语言和Python语言,最后落得两手空空。这种做法是很致命的。你一定要沉下心来专攻一门。鉴于这两种语言都是开放源代码工具,所以在公司里都有广泛运用。Python被公认为最简单的编程语言,而R语言一直都是最受青睐的统计工具。学习哪一门的决定权在你,因为两个同等出色。

推荐课程:学习Codecademy上的Python语言课程;学习DataCamp上的R语言课程。

PS:推荐R语言和Python入门课程《Python入门:数据挖掘实战》、《R语言入门》

2. 学习统计学和数学

统计学的内容全都是关于假设和数列,然而没有统计学和数学的知识你很难深入到数据行业里,这是数据科学家的重中之重。如果你不擅长数学,那现在是时候走出困境了。面对深奥的统计、几何和概率领域知识时,一定不要惊慌。可汗学院(Khan Academy)、Udacity等站点上都有很多优质的统计学课程。下载APP,现在就能开始学习!

推荐课程:Udacity上的推论统计学和描述统计学课程;可汗学院(Khan Academy)上的几何课程。

3.一次性完成一门网络开放课程(最难执行)

大规模网络开放课程可以免费获取和学习,可这对你来说也是最难实现的诺言。很多学生通常一次性注册选修很多课程,结果一门也没有圆满完成。所以,你一定要一次专注一门课,完成之后再选下一门。你也可以在Coursera,edX和 Udacit上查找任何想要的学习课程。

推荐课程:例如学习Coursera上的数据科学专业化(R语言)课程;学习Dataquest上的数据科学Python语言课程。

PS:推荐R语言和python进阶课程:《R语言实战》、《Python进阶:数据挖掘算法》

4. 了解业界动态,善于探索和发现

你要了解业内动态。我们生活在一个变化的世界,一夜之间事物就可能发生重大变化,今日和流行的技术明日就很可能面临淘汰。你一定要多与一些富有经验的专业人士、业内专家交流,预见未来的自己。所以赶快参与到讨论和聚会中来吧,关注一些微博微信,加入一些群组,多阅读一些书籍。

推荐书籍:大数据相关电子书集

中级水平

中级水平的数据科学家是什么样的?——如果你已经完成了前一阶段的内容,有过机器学习基础知识的实践经验,掌握了建立预测模型的知识,那你就达到了中级水平。完成这一阶段需要强大的决心和持久的练习。你准备好迎接这个挑战了吗?

1.理解并构建你的机器学习技能

机器学习是数据科学和技术的未来。所有的大型企业都不惜重金雇用掌握这个技能的人才。毫无疑问,近日来这项技术的需求越来越大,现在正是你充分利用这一局面的大好时机。今年,你应该努力在机器学习上精益求精,深入掌握回归、聚类和分类与回归树(CART)技能。Andrew Ng上你可以找到关于机器学习的免费资源。

推荐课程:在Andrew Ng完成机器学习课程任务。

PS:推荐课程《机器学习与R语言实践》,斯坦福大学公开课《机器学习》

2. 专注集成算法和Boosting算法

一旦你对机器学习充满自信,那就继续去学习其他模型。通过Boosting和集成算法,你的模型准确率与其他算法相比会突飞猛进。上述免费资源里也包含这一主题。不过一定要让自己做好心理准备,拿下这个主题需要超强的理解力。

推荐课程:阅读Kaggle Ensembling Guide。学习MIT LectureBoosting相关课程。推荐费博士的《Python进阶:数据挖掘算法》视频课程

3. 探索Spark、NoSQL和其他大数据工具

今年你的学习之旅始于大数据。考虑到大数据专业人员的需求激增,你一定要学习Spark,这个工具最近非常火爆。大数据的未来就在Spark,它广泛用于处理和操纵数据。除此之外,你还可以拓展到NoSQL和Hadoop领域来。

推荐课程:从Spark迈出学习第一步。推荐观看课程《大数据实战工具Spark》

4.给社区成员做分享

还有什么比分享知识更美妙呢!从今年开始,你可以把自己的知识分享给正在数据科学的路上不断探索的人们。你可以加入活跃的数据科学论坛,给他们答疑解惑,以你的灵招妙计给他们做培训。你也可以在附近的行业圈里发起聚会。

推荐任务:关注大数据公众号和论坛等等。

5.参加数据科学竞赛

是时候检验你的真才实学了。今年你一定要参加一些竞赛。这些竞赛会引导你去关注自己的弱势领域。此外,你也会因已有的学识而信心倍增。我希望你可以荣登Kaggle500强数据科学家之列。而现在,你的目标就是坚持到底。

推荐任务:加入Kaggle。加入Data Hack。DataCastle。天池大赛。

附言:有时竞赛也会有难度。你也可以通过这些实际的问题来检验你的技能和知识。这些问题不难,并且妙趣横生。

高级水平

对于进入这个阶段的人我就不需要来给出标准了,你们所了解的数据科学,很多人甚至连尝试的勇气都没有。身处这一阶段,你们的生活惬意而又自如。可有时还想去迎接挑战,以下是一些计划。

1. 建立深度学习模式

今年,你们要为有志于成为数据科学家的人们树立榜样。你要下决心在今年建立深度学习的模式。全球的人都在用这一模式进行预测,它是机器学习的高级阶段,其准确率明显高于普通的机器学习模型。

推荐课程:完成深度学习辅导课程任务。

2.回馈

我相信知识的意义不是被束之高阁,而是与人分享。分享越多,收获越大。据说,如果你了解一个新概念并解释给你的两个朋友,你对这个概念的记忆很可能会更久。所以今年,你必须制定计划,运用自己的知识和经验帮助数据分析学领域的人。这也会为更多的在这个领域的人指明方向。

推荐任务:在社区分享你的知识。

3. 探索强化学习

强化学习是机器学习中最有效而又鲜有发现的领域。今年,你可以下定决心研究下这个领域。虽然很有挑战性,但是一定值得你去尝试。无人汽车、无人侦察机就是强化学习的硕果。一旦开始学习这些,你就自然而言地进入到了人工智能领域。

推荐课程:学习 Andrew Moore的辅导课程。

点击下方“阅读原文”查看更多内容和相关推荐课程链接

↓↓↓

1、回复“数据分析师”查看数据分析师系列文章

2、回复“案例”查看大数据案例系列文章

3、回复“征信”查看相关征信的系列文章

4、回复“可视化”查看可视化专题系列文章

5、回复“SPPS”查看SPSS系列文章

6、回复“答案”查看hadoop面试题题目及答案

7、回复“爱情”查看大数据与爱情的故事

8、回复“笑话”查看大数据系列笑话

9、回复“大数据1、大数据2、大数据3、大数据4”查看大数据历史机遇连载

PPV课大数据ID: ppvke123 (长按可复制)

本公众号专注大数据和数据科学领域,分享领域知识和相关技术文章,探索大数据商业价值,培养和挖掘大数据专业人才,欢迎大家关注!

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2016-01-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏钱塘大数据

发展大数据不要一味追求数据规模大,要“应用为先”

作者:李国杰 ? 中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对...

34211
来自专栏AI科技评论

盘点丨2016 这一年,深度学习开始主宰互联网

AI 科技评论按:2016 即将画上句号,当我们回顾这一年的科技进展时,很难不联想到一个词——深度学习。当它从研究室中脱胎而出,并成为今年的当红热词,实际上我们...

3476
来自专栏钱塘大数据

【大咖说】发展大数据不要一味追求数据规模大,要“应用为先”

导读:中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对,现有的数据处...

3657
来自专栏专知

【重磅】美国人工智能前沿峰会日程预告:吴恩达、田渊栋、任小枫等25位AI专家分享最新成果

【导读】人工智能前沿峰会( AI Frontiers)将在美国圣塔克拉拉会议中心11月3号到5号举行。这次大会邀请来自谷歌、Facebook、微软和亚马逊等人工...

4274
来自专栏AI科技大本营的专栏

Google Brain团队最新视频介绍

刚刚,Google Brain团队发布了一个全新的介绍视频"Meet a few of our machine learning makers",Jeff De...

4186
来自专栏Albert陈凯

大数据到底怎么学:数据科学概论与大数据学习误区

作者|杜圣东 “数据科学家走在通往无所不知的路上,走到尽头才发现,自己一无所知。”-Will Cukierski,Head of Competitions &...

3567
来自专栏机器人网

解密Facebook人工智能研究室 数字助手制止你放纵自己

国外媒体近日撰文介绍了Facebook已成立一年的人工智能研究实验室。该实验室由纽约大学教授、深度学习专家雅恩·乐昆领导,他们目前想要为Facebook打造一种...

2825
来自专栏PPV课数据科学社区

【推荐】2016年文本、语义、社交分析十大趋势

大数据时代,文本、语义和社交分析就像企业的“天眼”,可以聆听到来自用户、患者和市场的声音。目前文本、语义和社交分析技术已经包括金融、医疗、传媒、电商在内的在多个...

2936
来自专栏大数据文摘

我们问了Yann LeCun等16个顶级数据科学家,这是他们给数据新人的建议

842
来自专栏钱塘大数据

【大咖说】发展大数据不要一味追求数据规模大,要“应用为先”

导读:中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对,现有的数据处...

3746

扫码关注云+社区

领取腾讯云代金券