VGG卷积神经网络模型解析

一:VGG介绍与模型结构

VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸识别、图像分类等方面,分别从VGG16~VGG19。VGG研究卷积网络深度的初衷是想搞清楚卷积网络深度是如何影响大规模图像分类与识别的精度和准确率的,最初是VGG-16号称非常深的卷积网络全称为(GG-Very-Deep-16 CNN),VGG在加深网络层数同时为了避免参数过多,在所有层都采用3x3的小卷积核,卷积层步长被设置为1。VGG的输入被设置为224x244大小的RGB图像,在训练集图像上对所有图像计算RGB均值,然后把图像作为输入传入VGG卷积网络,使用3x3或者1x1的filter,卷积步长被固定1。VGG全连接层有3层,根据卷积层+全连接层总数目的不同可以从VGG11 ~ VGG19,最少的VGG11有8个卷积层与3个全连接层,最多的VGG19有16个卷积层+3个全连接层,此外VGG网络并不是在每个卷积层后面跟上一个池化层,还是总数5个池化层,分布在不同的卷积层之下,下图是VGG11 ~GVV19的结构图:

考虑到整个网络的精简结构显示,ReLU激活函数并没有被显示在上述结构中。上述结构中一些说明:

  • conv表示卷积层
  • FC表示全连接层
  • conv3表示卷积层使用3x3 filters
  • conv3-64表示 深度64
  • maxpool表示最大池化

上述VGG11 ~ VGG19参数总数列表如下:

在实际处理中还可以对第一个全连接层改为7x7的卷积网络,后面两个全连接层改为1x1的卷积网络,这个整个VGG就变成一个全卷积网络FCN。在VGG网络之前,卷积神经网络CNN很少有突破10层的,VGG在加深CNN网络深度方面首先做出了贡献,但是VGG也有自身的局限性,不能无限制的加深网络,在网络加深到一定层数之后就会出现训练效果褪化、梯度消逝或者梯度爆炸等问题,总的来说VGG在刚提出的时候也是风靡一时,在ImageNet竞赛数据集上都取得了不错的效果

在其他类似数据集上同样表现不俗:

二:预训练模型使用(Caffe)

VGG本身提供了预训练模型供大家可以自由使用,预训练的VGG-16模型与VGG-19模型下载地址可以在这里发现:

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

下载VGG-16模型之后使用OpenCV DNN模块相关API,就可以实现一个图像分类器,支持1000种图像分类,基于ImageNet 2014-ILSVRC数据集训练。原图:

VGG-16预测分类结果:

稍微有点尴尬的是,OpenCL初始化内存不够了,只能说我的机器不给力:

加载VGG-16并执行图像分类代码如下:

Net net = readNetFromCaffe(model_txt_file, model_bin_file);
if (net.empty()) {
    printf("read caffe model data failure...\n");
    return -1;
}
Mat inputBlob = blobFromImage(src, 1.0, Size(w, h), Scalar(104, 117, 123));
Mat prob;
for (int i = 0; i < 10; i++) {
    net.setInput(inputBlob, "data");
    prob = net.forward("prob");
}
Mat probMat = prob.reshape(1, 1);
Point classNumber;
double classProb;
minMaxLoc(probMat, NULL, &classProb, NULL, &classNumber);
int classidx = classNumber.x;
printf("\n current image classification : %s, possible : %.2f", labels.at(classidx).c_str(), classProb);

putText(src, labels.at(classidx), Point(20, 20), FONT_HERSHEY_SIMPLEX, 1.0, Scalar(0, 0, 255), 2, 8);
imshow("Image Classification", src);

VGG不足之处

VGG的缺点就是参数文件比较大,速度比较慢,但是它依然是学习深度学习、理解卷积神经网络最好的基础模型之一

获取演示程序: https://github.com/gloomyfish1998/opencv_tutorial

原文发布于微信公众号 - OpenCV学堂(CVSCHOOL)

原文发表时间:2018-04-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能LeadAI

黑猿大叔-译文 | TensorFlow实现Batch Normalization

原文:Implementing Batch Normalization in Tensorflow(https://r2rt.com/implementing-...

57780
来自专栏ATYUN订阅号

一文带你认识深度学习中不同类型的卷积

卷积(convolution)现在可能是深度学习中最重要的概念。靠着卷积和卷积神经网络(CNN),深度学习超越了几乎其它所有的机器学习手段。 ? 这篇文章将简要...

47490
来自专栏CVer

风格迁移三部曲(一)之普通风格迁移

风格迁移(Style Transfer)是一个很有意思的任务,通过风格迁移可以使一张图片保持本身内容大致不变的情况下呈现出另外一张图片的风格。风格迁移三步曲将绍...

18000
来自专栏智能算法

SVM 的“核”武器

一、上一次我们讲到关于SVM通过拉格朗日乘子法去求解的部分,引入乘子 得到下面的式子: ? 我们令 ? 当所有的约束条件满足时,我们得到的 ? ,而之前的优...

34560
来自专栏人工智能

深度学习入门笔记(2)-线性回归 Linear Regression with autograd

一同前行! 假设我们有一个曲线(或者平面)y=wx+b 我们给定它一个特定的w,和b w = [2,51] b = 21.2 即y=2x1+51x2+21.2 ...

28990
来自专栏Ldpe2G的个人博客

Mxnet 实现图片快速风格化

22530
来自专栏AI科技评论

开发 | Keras版faster-rcnn算法详解(RPN计算)

AI科技评论按:本文首发于知乎专栏Learning Machine,作者张潇捷, AI科技评论获其授权转载。 前段时间学完Udacity的机器学习和深度学习的课...

782110
来自专栏杨熹的专栏

详解 LSTM

今天的内容有: LSTM 思路 LSTM 的前向计算 LSTM 的反向传播 关于调参 ---- LSTM 长短时记忆网络(Long Short Term Mem...

54650
来自专栏人工智能

机器学习(四)——梯度下降算法解释以及求解

机器学习(四) ——梯度下降算法解释以及求解θ (原创内容,转载请注明来源,谢谢) (本文接机器学习(二)的内容) 一、解释梯度算法 ? 梯度算法公式以及简化的...

23250
来自专栏烂笔头

机器学习笔记—KNN算法

目录[-] 前言 分类(Classification)是数据挖掘领域中的一种重要技术,它从一组已分类的训练样本中发现分类模型,将这个分类模型应用到待分类的样...

574100

扫码关注云+社区

领取腾讯云代金券