R语言中不能进行深度学习?

摘要: R语言现在能也进行深度学习了,而且和python一样好,快来试一试吧。

众所周知,R语言是统计分析最好用的语言。但在Keras和TensorFlow的帮助下,R语言也可以进行深度学习了。

在机器学习的语言的选择上,R和Python之间选择一直是一个有争议的话题。但随着深度学习的爆炸性增长,越来越多的人选择了Python,因为它有一个很大的深度学习库和框架,而R却没有(直到现在)。

但是我就是想使用R语言进入深度学习空间,所以我就从Python领域转入到了R领域,继续我的深度学习的研究了。这可能看起来几乎不可能的。但是今天这变成了可能。

随着Keras在R上的推出,R与Python的斗争回到了中心。Python慢慢成为了最流行的深度学习模型。但是,随着Keras库在R后端的发布,并且在后台还可以使用张力流(TensorFlow)(CPU和GPU兼容性),所以在深度学习领域,R将再次与Python打成平手。

下面我们将看到如何使用Tensorflow在R中安装Keras,并在RStudio的经典MNIST数据集上构建我们的第一个神经网络模型。

目录:

1.在后端安装带有张量的Keras。

2.使用Keras可以在R中构建不同类型的模型。

3.在R中使用MLP对MNIST手写数字进行分类。

4.将MNIST结果与Python中的等效代码进行比较。

5.结束笔记。

1.在后端安装带有TensorFlow的Keras。

在RStudio中安装Keras的步骤非常简单。只需按照以下步骤,您将很顺利的在R中创建您的第一个神经网络模型。

install.packages("devtools")
devtools::install_github("rstudio/keras")

上述步骤将从GitHub仓库加载keras库。现在是将keras加载到R并安装TensorFlow的时候了。

library(keras)

默认情况下,RStudio加载TensorFlow的CPU版本。使用以下命令下载TensorFlow的CPU版本。

install_tensorflow()

要为单个用户/桌面系统安装具有GPU支持的TensorFlow版本,请使用以下命令。

install_tensorflow(gpu=TRUE)

有关更多的用户安装,请参阅本安装指南。

现在我们在RStudio中安装了keras和TensorFlow,让我们在R中启动和构建我们的第一个神经网络来解决MNIST数据集

2.使用keras可以在R中构建的不同类型的模型

以下是使用Keras可以在R中构建的模型列表。

1.多层感知器

2.卷积神经网络

3.循环神经网络

4.Skip-Gram模型

5.使用预先训练的模型,如VGG16,RESNET等

6.微调预先训练的模型。

让我们开始构建一个非常简单的MLP模型,只需一个隐藏的层来尝试分类手写数字。

3.使用R中的MLP对MNIST手写数字进行分类

#loading keras library
library(keras)
#loading the keras inbuilt mnist dataset
data<-dataset_mnist()
#separating train and test file
train_x<-data$train$x
train_y<-data$train$y
test_x<-data$test$x
test_y<-data$test$y
rm(data)
# converting a 2D array into a 1D array for feeding into the MLP and normalising the matrix
train_x <- array(train_x, dim = c(dim(train_x)[1], prod(dim(train_x)[-1]))) / 255
test_x <- array(test_x, dim = c(dim(test_x)[1], prod(dim(test_x)[-1]))) / 255
#converting the target variable to once hot encoded vectors using keras inbuilt function
train_y<-to_categorical(train_y,10)
test_y<-to_categorical(test_y,10)
#defining a keras sequential model
model <- keras_model_sequential()
#defining the model with 1 input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer[10 neurons]
#i.e number of digits from 0 to 9
model %>% 
layer_dense(units = 784, input_shape = 784) %>% 
layer_dropout(rate=0.4)%>%
layer_activation(activation = 'relu') %>% 
layer_dense(units = 10) %>% 
layer_activation(activation = 'softmax')
#compiling the defined model with metric = accuracy and optimiser as adam.
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = c('accuracy')
)
#fitting the model on the training dataset
model %>% fit(train_x, train_y, epochs = 100, batch_size = 128)
#Evaluating model on the cross validation dataset
loss_and_metrics <- model %>% evaluate(test_x, test_y, batch_size = 128)

上述代码的训练精度为99.14,验证准确率为96.89。代码在i5处理器上运行,运行时间为13.5秒,而在TITANx GPU上,验证精度为98.44,平均运行时间为2秒。

4.MLP使用keras–R VS Python

为了比较起见,我也在Python中实现了上述的MNIST问题。我觉得在keras-R和Python中应该没有任何区别,因为R中的keras创建了一个conda实例并在其中运行keras。你可以尝试运行一下下面等效的python代码。

#importing the required libraries for the MLP model
import  keras
from  keras.models  import Sequential
import  numpy  as  np
#loading  the  MNIST dataset  from  keras
from  keras.datasets  import  mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions
x_train=np.reshape(x_train,(x_train.shape[0],-1))/255
x_test=np.reshape(x_test,(x_test.shape[0],-1))/255
import pandas as pd
y_train=pd.get_dummies(y_train)
y_test=pd.get_dummies(y_test)
#performing one-hot encoding on target variables for train and test
y_train=np.array(y_train)
y_test=np.array(y_test)
#defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons]
model=Sequential()
from keras.layers import Dense
model.add(Dense(784, input_dim=784, activation='relu'))
keras.layers.core.Dropout(rate=0.4)
model.add(Dense(10,input_dim=784,activation='softmax'))
# compiling model using adam optimiser and accuracy as metric
model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy'])
# fitting model and performing validation
model.fit(x_train,y_train,epochs=50,batch_size=128,validation_data=(x_test,y_test))

上述模型在同一GPU上实现了98.42的验证精度。所以,我们最初猜到的结果是正确的。

5.结束笔记

如果这是你在R的第一个深度学习模型,我希望你喜欢它。通过一个非常简单的代码,您可以有98%位准确率对是否为手写数字进行分类。这应该是足够的动力让你开始深度学习。

如果您已经在Python中使用keras深度学习库,那么您将在R中找到keras库的语法和结构与Python中相似的地方。事实上,R中的keras包创建了一个conda环境,并安装了在该环境中运行keras所需的一切。但是,让我更为激动的是,现在看到数据科学家在R中建立现实生活中的深层次的学习模型。据说 – 竞争应该永远不会停止。我也想听听你对这一新发展观点的看法。你可以在下面留言分享你的看法。

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

文章原标题《Getting started with Deep Learning using Keras and TensorFlow in R》,作者: NSS ,

译者:袁虎,审阅: 阿福

原文:https://www.analyticsvidhya.com/blog/2017/06/getting-started-with-deep-learning-using-keras-in-r/?spm=5176.100239.blogcont109827.13.n0bPqt

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2017-06-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏深度学习那些事儿

浅谈深度学习中超参数调整策略

深度学习中,设计模型以及保证模型的正确性是首要需要考虑的。当模型设置完成时,理论上模型不存在问题,实现效果也通过计算可以复现出来。一切准备就绪后,那么接下来需要...

34611
来自专栏机器之心

业界 | Facebook开源Mask R-CNN的PyTorch 1.0基准,比mmdetection更快、更省内存

项目地址:https://github.com/facebookresearch/maskrcnn-benchmark

2563
来自专栏AI研习社

你在数据预处理上花费的时间,是否比机器学习还要多?

Nuts-ml 是一个新的 Python 数据预处理库,专门针对视觉领域的 GPU 深度学习应用。 它以独立、可复用的单元模块的形式,提供主流数据预处理函数。...

3838
来自专栏人工智能LeadAI

TensorFlow从0到1丨 第五篇:TensorFlow轻松搞定线性回归

上一篇 第一个机器学习问题 其实是一个线性回归问题(line regression),呈现了用数据来训练模型的具体方式。本篇从平行世界返回,利用TensorFl...

3607
来自专栏AI研习社

手把手教你在浏览器中使用脸部识别软件包 face-api.js

我可以很激动地说,我们终于有可能在浏览器中运行人脸识别程序了!在这篇文章中,我会给大家介绍一个基于 TensorFlow.js 核心的 JavaScript 模...

1881
来自专栏机器之心

资源 | 微软开源MMdnn:实现多个框架之间的模型转换

选自GitHub 作者:Kit CHEN等 机器之心编译 参与:路雪、思源 近日,微软开源 MMdnn,可用于转换、可视化和诊断深度神经网络模型的全面、跨框架解...

3756
来自专栏尾尾部落

使用自己的语料训练word2vec模型

先对新闻文本进行分词,使用的是结巴分词工具,将分词后的文本保存在seg201708.txt,以备后期使用。

8762
来自专栏ATYUN订阅号

基于计算机视觉和OpenCV:创建一个能够计算道路交通流量的应用

本文将介绍如何在不需要大量的深度学习算法的情况下,基于计算机视觉来计算道路交通流量。本教程只使用Python和OpenCV,在背景差分算法的帮助下,实现非常简单...

3036
来自专栏AI科技大本营的专栏

AI 技术讲座精选:如何在时间序列预测中使用LSTM网络中的时间步长

Keras中的长短期记忆(LSTM)网络支持时间步长。 这就引出这样一个问题:单变量时间序列的滞后观察是否可以用作LSTM的时间步长,这样做是否能改进预测性能...

4595
来自专栏CreateAMind

运动信息向量的神经网络学习 code、ppt、视频ok

官方代码还未开放, http://visualdynamics.csail.mit.edu/

742

扫码关注云+社区

领取腾讯云代金券