走进机器学习

机器学习(Machine Learning, ML),顾名思义就是要让机器能像人一样去学习。这是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的一个分支,也是人工智能的核心,是使计算机具有智能的根本途径。所以和人工智能一样,机器学习也是一门综合了统计学、概率论、逼近论、凸分析、计算复杂性理论等的交叉学科。

图1 机器学习的研究领域

从图中我们可以看到机器学习和模式识别、数据挖掘、统计学习、计算机视觉、语音识别、自然语言处理等多个领域都密切相关。

机器学习按实现方法可以如下分类:

(一)监督学习(Supervised learning):是指在有标记样本上建立机器学习的模型。

我们已经知道一些数据和正确的输出结果(训练集),然后通过这些数据训练出一个模型,再利用这个模型去预测新数据的输出结果。监督学习可分为回归问题和分类问题两大类。回归问题中,我们预测的结果是连续值;而分类问题中,我们预测的结果是离散值。常见的监督学习算法有:线性回归、逻辑回归、K-近邻、朴素贝叶斯、决策树、随机森林、支持向量机、梯度下降算法等。

下面说一下监督学习的一般框架:

f(x)可以是如下几种形态:

1. 一种回归方法

2. 一个最近邻模型

3. 一系列规则的集合

4. 一个神经网络

5. 一个贝叶斯网络

......

(二)无监督学习(Unsupervised learning):无监督学习中没有给定类标的训练样本,这就需要我们对给定的数据直接进行建模。和监督学习最大的不同在于无监督学习我们事先并不知道数据的类标。常见的无监督学习算法有:聚类、EM算法等。有监督学习与无监督学习的区别就在有无标记样本(或类标)。

(三)强化学习(Reinforcement learning):强化学习是研究如何基于环境而行动,以取得最大的预期利益。比如:下棋、问题。在全局结果没出来之前,不知道每步走的是对还是错。也就是说我们在进行每一步时候不知道其对结果的影响有多大,只有等最终的结果出来后才明确。强化学习很依赖于学习的周围环境。

目前机器学习广泛应用于语音识别、自然语言处理、医学诊断、无人驾驶、人机博弈等多个领域,诸如:科大讯飞语音助手、谷歌翻译、电子商城的推荐系统、美图软件的图片处理功能、今日头条的个性化新闻定制等这些具体的应用场景和我们的生活息息相关。而在未来,机器学习将实现金融、医疗、教育、交通、生物、化学、农业等的全领域覆盖,这不仅是一场科技的革命,更是时代的大势所趋。机器学习的浪潮必然会让我们的生活发生翻天覆地的变化,也将全方位推动人类社会更加文明。

原文发布于微信公众号 - 磐创AI(xunixs)

原文发表时间:2018-03-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

深度学习与机器学习

机器学习和深度学习变得风靡一时!突然之间,每个人都在谈论他们 —— 不管他们是否了解这两者的区别!无论您是否关注数据科学,你肯定听过这些术语。

300110
来自专栏AI

什么是深度学习?

深度学习是机器学习的一个子领域,涉及被称为人工神经网络的大脑的结构和功能所启发的算法。

28770
来自专栏数据派THU

深度学习并非万能,你用对了吗?

来源:机器人圈 作者:Pablo Cordero 本文文章长度为4700字,建议阅读8分钟。 本文为你全面揭示深度学习的应用场合和作用。 [ 导读 ]深度学习随...

20780
来自专栏ATYUN订阅号

【学术】当你开始深度学习时,请注意这些事情

深度学习为数据科学提供了非常有效的工具,几乎可以解决任何领域的问题,并使用任何类型的数据。然而,深度学习算法的非直观性推导和使用需要非常仔细的实验设计,如果不能...

394100
来自专栏机器之心

ECCV 2018 | DeepMind新研究连接听与看,实现「听声辨位」的多模态学习

视觉和听觉事件往往同时发生:音乐家拨动琴弦流出旋律;酒杯摔碎发出破裂声;摩托车加速时发出轰鸣声。这些视觉和听觉刺激同时发生,因为它们的起因相同。理解视觉事件与其...

11910
来自专栏Soul Joy Hub

《基于深度学习的线上农产品销量预测模型研究》阅读笔记

http://blog.csdn.net/u011239443/article/details/78135388 ICM模型 文中提出的 model- Impe...

36040
来自专栏AI研习社

数据挖掘竞赛的套路就在这里了,看完本文全明白!

刚好在暑假通过参加 Kaggle 的 Zillow Prize 比赛来让我在数据挖掘和机器学习中完成了菜逼到 Level 1 的转变,借这个平台总结一下比赛的...

51160
来自专栏AI科技评论

干货 | 深度学习的实践应用之路

AI科技评论按:本文由图普科技编译自《Applying Deep Learning to Real-world Problems》,AI科技评论独家首发。 近年...

35860
来自专栏PPV课数据科学社区

机器学习和统计模型的差异

在各种各样的数据科学论坛上这样一个问题经常被问到——机器学习和统计模型的差别是什么? 这确实是一个难以回答的问题。考虑到机器学习和统计模型解决问题的相似性,两者...

33360
来自专栏新智元

Yann LeCun 最新演讲:人工智能下一站——无监督学习(68ppt)

【新智元导读】 日前,Facebook AI 实验室负责人、纽约大学教授 Yann LeCun 受邀来到 CMU 进行分享,讲述深度学习领域最近技术进展,并回答...

394100

扫码关注云+社区

领取腾讯云代金券