专栏首页杂七杂八tensorflow oom报错OOM when allocating tensor with shape

tensorflow oom报错OOM when allocating tensor with shape

今天在GPU上运行卷积神经网络手写数字,报了如下错误Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]

一开始还不知道因为什么,因为我的训练集我已经分批训练了啊,竟然换回出现这样的问题,后来在StackOverflow上发现了原因。原来我在做测试的时候一下子把测试集全部读进去了,这就造成了显卡的显存不能容纳这么多的数据,造成的崩溃,只需要改改最后测试就行了。 即将print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))修改为:

for i in xrange(10):
    testSet = mnist.test.next_batch(50)
    print("test accuracy %g"%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0}))

下面是我修改后的完整代码

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
n_test_batch = mnist.train.num_examples // batch_size

#初始化权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)
#初始化偏置值
def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

#卷积层
def conv2d(x,W):
    #x input tensor of shape [batch,in_height,in_width,in_channels]
    #W filter /kernel tensor of shape[filter_height,filter_width,in_channels,out_channels]
    #strides[0/3]=1,strides[1]代表x方向的步长,strides[2]y方向步长
    #padding 'SAME' 'VALID'
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#池化层
def max_pool_2x2(x):
    #ksize[1,x,y,1]
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784]) #28*28
y = tf.placeholder(tf.float32,[None,10])

#改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
x_image = tf.reshape(x,[-1,28,28,1])

#初始化第一个卷积层的权值和偏置
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])

#把x_image和权值向量进行卷积,再加上偏置值,然后应用与relu激活函数
h_vonv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#进行池化
h_pool1 = max_pool_2x2(h_vonv1)#进行max-pooling

#初始化第二个卷积层的权值和偏置
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
#把h_pool1和权值向量进行卷积,再加上偏置值,然后应用与relu激活函数
h_vonv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#进行池化
h_pool2 = max_pool_2x2(h_vonv2)#进行max-pooling

#28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化后变为7*7
#经过上面操作后得到64张7*7的平面

#初始化第一个全连接层的权值
W_fc1 = weight_variable([7*7*64,1024])#上一场有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024]) #1024个节点

#把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#keep_prob用来表示神经元的输出概率
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

#初始化第二个全连接层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])

#计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#softmax和交叉熵一起使用
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#结果放在一个布尔列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置,1代表一行中的最大位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys,keep_prob:0.7})

        #下面的代码为修改后的结果
        acc = 0
        for batch in range(n_test_batch):
            batch_test_xs,batch_test_ys = mnist.test.next_batch(batch_size)
            acc += sess.run(accuracy, feed_dict={x: batch_test_xs, y: batch_test_ys,keep_prob:1})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc/(batch+1)))

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 盒子模型

    盒模型(box model)是CSS中的一个重要概念,它是元素大小的呈现方式。需要记住的是:"every element in web design is a ...

    听城
  • 使用Springboot版mybatis逆向生成工具

    mybatis-generatorConfig地址链接:https://pan.baidu.com/s/1TE5ugwmo4UMchOz7VWOAfQ 密码:e...

    听城
  • tensorflow-gpu版安装

    需要环境 Anaconda CUDA cuDNN 注:tensorflow1.4用的是cuda8,cudnn6;tensorflow用的是cuda9,cudn...

    听城
  • Java基础-18(02)总结Map,HashMap,HashMap与Hashtable区别,Collections工具类

    (8)Hashtable和HashMap的区别? package cn.itcast_07; import java.util.Hashtable; /* *...

    奋斗蒙
  • [ISUX译]iOS 9 人机界面指南(五):图标与图形设计 - 腾讯ISUX

    腾讯ISUX
  • 金山云好委屈

    2020-01-08圈内出现了一篇博眼球的测试报告:阿里云、腾讯云、UCloud 、华为云云主机对比测试报告。金山云应该在前四,但是金山云却没出现。典型的蹭AT...

    我爱你的一诺
  • 重临命令行

       今天我又开始接触Linux命令行界面,我异常兴奋,本来是敲c++的时间,结果全部都用在了这里,因为已经有好几年没有动过这个界面了,以前学的命令行都几乎忘关...

    CN_Simo
  • 只需在Vim或Neovim编辑器中打开文件,您的Linux就会被黑客攻击

    如果您最近没有更新Linux操作系统,尤其是命令行文本编辑器实用程序,甚至不要尝试使用Vim或Neovim查看文件的内容。 安全研究员Armin Razmjo...

    天钧
  • 【LTE系列课程】EMM和ECM

    在用户和网络之间的移动性和会话管理是由UE和MME的控制面的NAS层的NAS协议来控制的。UE和MME使用NAS消息相互通信。

    鲜枣课堂
  • 嵌入式的浏览器有第三种方案啦

    最初在游戏里嵌入网页用的是LLmozLib, 说实话, 还不错, 用的FireFox的解析引擎

    逍遥剑客

扫码关注云+社区

领取腾讯云代金券