前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Doc2vec预测IMDB评论情感

Doc2vec预测IMDB评论情感

作者头像
听城
发布2018-04-27 16:55:16
3.1K1
发布2018-04-27 16:55:16
举报
文章被收录于专栏:杂七杂八杂七杂八

本文内容源自于国外2015年的一篇博客,中文翻译可以在伯乐在线看到。可以整体了解一些word2vec和doc2vec的使用方法,但是由于时间过去很久了,gensim的api也发生了变化,因此特意重新在源代码基础上做了修改,也回顾一下word2vec和doc2vec的使用

环境要求

  • python2.7或python3+
  • gensim
  • numpy
  • matplotlib

情感分析基本原理

情感分析(Sentiment analysis)是自然语言处理(NLP)方法中常见的应用,尤其是以提炼文本情绪内容为目的的分类。利用情感分析这样的方法,可以通过情感评分对定性数据进行定量分析。虽然情感充满了主观性,但情感定量分析已经有许多实用功能,例如企业藉此了解用户对产品的反映,或者判别在线评论中的仇恨言论。

情感分析最简单的形式就是借助包含积极和消极词的字典。每个词在情感上都有分值,通常 +1 代表积极情绪,-1 代表消极。接着,我们简单累加句子中所有词的情感分值来计算最终的总分。显而易见,这样的做法存在许多缺陷,最重要的就是忽略了语境(context)和邻近的词。例如一个简单的短语“not good”最终的情感得分是 0,因为“not”是 -1,“good”是 +1。正常人会将这个短语归类为消极情绪,尽管有“good”的出现。

另一个常见的做法是以文本进行“词袋(bag of words)”建模。我们把每个文本视为 1 到 N 的向量,N 是所有词汇(vocabulary)的大小。每一列是一个词,对应的值是这个词出现的次数。比如说短语“bag of bag of words”可以编码为 [2, 2, 1]。这个值可以作为诸如逻辑回归(logistic regression)、支持向量机(SVM)的机器学习算法的输入,以此来进行分类。这样可以对未知的(unseen)数据进行情感预测。注意这需要已知情感的数据通过监督式学习的方式(supervised fashion)来训练。虽然和前一个方法相比有了明显的进步,但依然忽略了语境,而且数据的大小会随着词汇的大小增加。

Word2Vec 和 Doc2Vec

近几年,Google 开发了名为 Word2Vec 新方法,既能获取词的语境,同时又减少了数据大小。Word2Vec 实际上有两种不一样的方法:CBOW(Continuous Bag of Words,连续词袋)和 Skip-gram。对于 CBOW,目标是在给定邻近词的情况下预测单独的单词。Skip-gram 则相反:我们希望给定一个单独的词(见图 1)来预测某个范围的词。两个方法都使用人工神经网络(Artificial Neural Networks)来作为它们的分类算法。首先,词汇表中的每个单词都是随机的 N 维向量。在训练过程中,算法会利用 CBOW 或者 Skip-gram 来学习每个词的最优向量。

W(t) 代表当前的单词,而w(t-2), w(t-1) 等则是邻近的单词

这些词向量现在可以考虑到上下文的语境了。这可以看作是利用基本的代数式来挖掘词的关系(例如:“king” – “man” + “woman” = “queen”)。这些词向量可以作为分类算法的输入来预测情感,有别于词袋模型的方法。这样的优势在于我们可以联系词的语境,并且我们的特征空间(feature space)的维度非常低(通常约为 300,相对于约为 100000 的词汇)。在神经网络提取出这些特征之后,我们还必须手动创建一小部分特征。由于文本长度不一,将以全体词向量的均值作为分类算法的输入来归类整个文档。

然而,即使使用了上述对词向量取均值的方法,我们仍然忽略了词序。Quoc Le 和 Tomas Mikolov 提出了 Doc2Vec 的方法对长度不一的文本进行描述。这个方法除了在原有基础上添加 paragraph / document 向量以外,基本和 Word2Vec 一致,也存在两种方法:DM(Distributed Memory,分布式内存)和分布式词袋(DBOW)。DM 试图在给定前面部分的词和 paragraph 向量来预测后面单独的单词。即使文本中的语境在变化,但 paragraph 向量不会变化,并且能保存词序信息。DBOW 则利用paragraph 来预测段落中一组随机的词(见图 2)。

选自《Distributed Representations of Sentences and Documents》

一旦经过训练,paragraph 向量就可以作为情感分类器的输入而不需要所有单词。这是目前对 IMDB 电影评论数据集进行情感分类最先进的方法,错误率只有 7.42%。当然,如果这个方法不实用,说这些都没有意义。幸运的是,一个 Python 第三方库 gensim 提供了 Word2Vec 和 Doc2Vec 的优化版本。

Doc2vec预测IMDB评论情感分析

一旦文本上升到段落的规模,忽略词序和上下文信息将面临丢失大量特征的风险。这样的情况下更适合使用 Doc2Vec 创建输入特征。我们将使用 IMDB 电影评论数据集 作为示例来测试 Doc2Vec 在情感分析中的有效性。数据集中包含了 25,000 条积极评论,25,000 条消极评论和 50,000 条未标记的电影评论。

数据准备

链接:https://pan.baidu.com/s/1snfuPB3 密码:v68x

导入依赖库
代码语言:javascript
复制
# gensim modules
from gensim import utils
from gensim.models.doc2vec import TaggedDocument
from gensim.models import Doc2Vec

# numpy
import numpy as np

# classifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import logging
import sys
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
%matplotlib inline
读取影评内容
代码语言:javascript
复制
with utils.smart_open('./data/pos.txt','r',encoding='utf-8') as infile:
    pos_reviews = []
    line = infile.readline()
    while line:
        pos_reviews.append(line)
        line = infile.readline()

with utils.smart_open('./data/neg.txt','r',encoding='utf-8') as infile:
    neg_reviews = []
    line = infile.readline()
    while line:
        neg_reviews.append(line)
        line = infile.readline()

with utils.smart_open('./data/unsup.txt','r',encoding='utf-8') as infile:
    unsup_reviews = []
    line = infile.readline()
    while line:
        unsup_reviews.append(line)
        line = infile.readline()
数据划分
代码语言:javascript
复制
# 1 代表积极情绪,0 代表消极情绪
y = np.concatenate((np.ones(len(pos_reviews)), np.zeros(len(neg_reviews))))

x_train, x_test, y_train, y_test = train_test_split(np.concatenate((pos_reviews, neg_reviews)), y, test_size=0.2)
创建TaggedDocument对象

Gensim 的 Doc2Vec 工具要求每个文档/段落包含一个与之关联的标签。我们利用 TaggedDocument进行处理。格式形如 “TRAIN_i” 或者 “TEST_i”,其中 “i” 是索引

代码语言:javascript
复制
import gensim
def labelizeReviews(reviews, label_type):
    for i,v in enumerate(reviews):
        label = '%s_%s'%(label_type,i)
        yield gensim.models.doc2vec.TaggedDocument(gensim.utils.simple_preprocess(v,max_len=100), [label])
x_train_tag = list(labelizeReviews(x_train, 'train'))
x_test_tag = list(labelizeReviews(x_test, 'test'))
unsup_reviews_tag = list(labelizeReviews(unsup_reviews, 'unsup'))
实例化Doc2vec模型

下面我们实例化两个 Doc2Vec 模型,DM 和 DBOW。gensim 文档建议多次训练数据,并且在每一步(pass)调节学习率(learning rate)或者用随机顺序输入文本。接着我们收集了通过模型训练后的电影评论向量。DM 和 DBOW会进行向量叠加,这是因为两个向量叠加后可以获得更好的结果

代码语言:javascript
复制
size = 100

# 实例化 DM 和 DBOW 模型
log.info('D2V')
model_dm = gensim.models.Doc2Vec(min_count=1, window=10, vector_size=size, sample=1e-3, negative=5, workers=3,epochs=10)
model_dbow = gensim.models.Doc2Vec(min_count=1, window=10, vector_size=size, sample=1e-3, negative=5, dm=0, workers=3,epochs=10)
# 对所有评论创建词汇表
alldata = x_train_tag
alldata.extend(x_test_tag)
alldata.extend(unsup_reviews_tag)
model_dm.build_vocab(alldata)
model_dbow.build_vocab(alldata)
def sentences_perm(sentences):
    shuffled = list(sentences)
    random.shuffle(shuffled)
    return (shuffled)
for epoch in range(10):
    log.info('EPOCH: {}'.format(epoch))
    model_dm.train(sentences_perm(alldata),total_examples=model_dm.corpus_count,epochs=1)
    model_dbow.train(sentences_perm(alldata),total_examples=model_dbow.corpus_count,epochs=1)
获取生成的向量

获取向量有两种方式,一种是根据上面我们定义的标签来获取,另一种通过输入一篇文章的内容来获取这篇文章的向量。更推荐使用第一种方式来获取向量。

代码语言:javascript
复制
#第一种方法
train_arrays_dm = numpy.zeros((len(x_train), 100))
train_arrays_dbow = numpy.zeros((len(x_train), 100))
for i in range(len(x_train)):
    tag = 'train_' + str(i)
    train_arrays_dm[i] = model_dm.docvecs[tag]
    train_arrays_dbow[i] = model_dbow.docvecs[tag]
train_arrays = np.hstack((train_arrays_dm, train_arrays_dbow))
test_arrays_dm = numpy.zeros((len(x_test), 100))
test_arrays_dbow = numpy.zeros((len(x_test), 100))
for i in range(len(x_test)):
    tag = 'test_' + str(i)
    test_arrays_dm[i] = model_dm.docvecs[tag]
    test_arrays_dbow[i] = model_dbow.docvecs[tag]
test_arrays = np.hstack((test_arrays_dm, test_arrays_dbow))
#第二种
def getVecs(model, corpus):
    vecs = []
    for i in corpus:
        vec = model.infer_vector(gensim.utils.simple_preprocess(i,max_len=300))
        vecs.append(vec)
    return vecs
train_vecs_dm = getVecs(model_dm, x_train)
train_vecs_dbow = getVecs(model_dbow, x_train)
train_vecs = np.hstack((train_vecs_dm, train_vecs_dbow))
预测

通过预测我们得到了88%的正确率,原论文为90+,这和我们训练的epoch有关系,也和众多的超参数有关系

代码语言:javascript
复制
classifier = LogisticRegression()
classifier.fit(train_arrays, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)

log.info(classifier.score(test_arrays, y_test))
y_prob = classifier.predict_proba(test_arrays)[:,1]

fpr,tpr,_ = roc_curve(y_test, y_prob)
roc_auc = auc(fpr,tpr)
plt.plot(fpr,tpr,label='area = %.2f' %roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.legend(loc='lower right')

roc

image.png

word2vec预测

上面我们用doc2vec预测的,下面我们用word2vec进行预测看看差距有多大。为了结构化分类器的输入,我们对一篇文章所有词向量之和取均值。最后得到结果为72%

代码语言:javascript
复制
# gensim modules
from gensim import utils
from gensim.models import Word2Vec
# numpy
import numpy as np

# classifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import logging
import sys
log = logging.getLogger()
log.setLevel(logging.INFO)

ch = logging.StreamHandler(sys.stdout)
ch.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
log.addHandler(ch)
with utils.smart_open('./data/pos.txt','r',encoding='utf-8') as infile:
    pos_reviews = []
    line = infile.readline()
    while line:
        pos_reviews.append(line)
        line = infile.readline()

with utils.smart_open('./data/neg.txt','r',encoding='utf-8') as infile:
    neg_reviews = []
    line = infile.readline()
    while line:
        neg_reviews.append(line)
        line = infile.readline()

with utils.smart_open('./data/unsup.txt','r',encoding='utf-8') as infile:
    unsup_reviews = []
    line = infile.readline()
    while line:
        unsup_reviews.append(line)
        line = infile.readline()
# 1 代表积极情绪,0 代表消极情绪
y = np.concatenate((np.ones(len(pos_reviews)), np.zeros(len(neg_reviews))))

x_train, x_test, y_train, y_test = train_test_split(np.concatenate((pos_reviews, neg_reviews)), y, test_size=0.2)
import gensim
def labelizeReviews(reviews):
    print(len(reviews))
    for i,v in enumerate(reviews):
        yield gensim.utils.simple_preprocess(v,max_len=100)
x_train_tag = list(labelizeReviews(x_train))
x_test_tag = list(labelizeReviews(x_test))
unsup_reviews_tag = list(labelizeReviews(unsup_reviews))
size = 100

# 实例化 DM 和 DBOW 模型
log.info('D2V')
model = Word2Vec(size=200,window=10,min_count=1)
# 对所有评论创建词汇表
alldata = x_train_tag
alldata.extend(x_test_tag)
alldata.extend(unsup_reviews_tag)
model.build_vocab(alldata)
import random
def sentences_perm(sentences):
    shuffled = list(sentences)
    random.shuffle(shuffled)
    return (shuffled)
log.info('Epoch')
for epoch in range(10):
    log.info('EPOCH: {}'.format(epoch))
    model.train(sentences_perm(alldata),total_examples=model.corpus_count,epochs=1)
# 对训练数据集创建词向量,接着进行比例缩放(scale)。
size=200
def buildWordVector(text):
    vec = np.zeros(size).reshape((1, size))
    count = 0.
    for word in text:
        try:
            vec += model[word]
            count += 1.
        except KeyError:
            continue
    if count != 0:
        vec /= count
    return vec
from sklearn.preprocessing import scale
train_vecs = np.concatenate([buildWordVector(gensim.utils.simple_preprocess(z,max_len=200)) for z in x_train])
train_vecs = scale(train_vecs)
test_vecs = np.concatenate([buildWordVector(gensim.utils.simple_preprocess(z,max_len=200)) for z in x_test])
test_vecs = scale(test_vecs)
classifier = LogisticRegression()
classifier.fit(train_vecs, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)

log.info(classifier.score(test_vecs, y_test))

后续工作

参考GitHub上一篇文章比较word2vec与FastText

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.03.01 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 环境要求
  • 情感分析基本原理
  • Word2Vec 和 Doc2Vec
  • Doc2vec预测IMDB评论情感分析
    • 数据准备
      • 导入依赖库
        • 读取影评内容
          • 数据划分
            • 创建TaggedDocument对象
              • 实例化Doc2vec模型
                • 获取生成的向量
                  • 预测
                  • word2vec预测
                  • 后续工作
                  相关产品与服务
                  NLP 服务
                  NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档