前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >循环神经网络

循环神经网络

作者头像
两只橙
发布2018-04-27 17:26:00
9170
发布2018-04-27 17:26:00
举报
文章被收录于专栏:深度学习深度学习深度学习

循环神经网络的神经网络体系结构,它针对的不是自然语言数据,而是处理连续的时间数据,如股票市场价格。在本文结束之时,你将能够对时间序列数据中的模式进行建模,以对未来的值进行预测。

1.上下文信息

回到学校,我的一个期中考试仅由真的或假的问题组成时。假设一半的答案是“真的”,而另一半则是“假的”。我想出了大部分问题的答案,剩下的是靠随机猜测。我做了一件聪明的事情,也许你也可以尝试一下这个策略。在计数了我的“真”的答案之后,我意识到它与“假”这个答案不成比例。于是我的大部分猜测是“假”的,这样就可以平衡分配。 这竟然是有效的。在那一时刻我感觉到我是狡猾的。这是什么样的判断力,使我们对自己的决定那么有信心,我们又如何将这种判断力给予神经网络? 这个问题的一个答案是使用上下文来回答问题。语境提示是可以提高机器学习算法性能的重要信号。例如,假设你想检查一个英文句子,并标记每个单词的词性。 傻傻的方法是将每个单词单独分类为“名词”,“形容词”等,而不确认其相邻的单词。单词“努力”被用作动词,但根据上下文,你也可以使用它作为一个形容词,单纯的词性标注是一个需要努力的问题。 更好的方法是考虑上下文信息。为了向神经网络提供上下文信息,我们可以使用称为循环神经网络的体系结构。

2.循环神经网络(RNN)简介

为了理解循环神经网络(RNN),我们首先来看一下图1所示的简单架构。它将输入向量X(t)作为输入,并在某个时间(t)产生一个向量Y(t)的输出。中间的圆圈表示网络的隐藏层。

图1

分别具有标记为X(k)和Y(k)的输入和输出层的神经网络 通过足够的输入/输出示例,你可以在TensorFlow中了解网络的参数。例如,我们将输入权重称为矩阵W in,输出权重作为矩阵W out。假设有一个隐藏层,称为向量Z(t)。 如图2所示,神经网络的前半部分的特征在于函数Z(t)= X(t)* W in,神经网络的后半部分形式为Y(t)= Z(t)* W out。同样,如果你愿意,整个神经网络可以是函数Y(t)=(X(t)* Win)* W out。

图2

神经网络的隐藏层可以被认为是数据的隐藏,由其输入权重编码并输出权重解码。

在微调神经网络后,你可能希望在现实世界的场景中开始使用你所学习的模型。通常,这意味着你将多次调用该模型,甚至可能连续反复调用,如图3所示。

图3

通常,我们会运行相同的神经网络多次,而不考虑关于先前运行的隐藏状态。

在每个时间t,当调用学习模型时,这种体系结构不考虑关于以前运行的结果经验。就像预测股市走势一样,只看当前的数据。循环神经网络(RNN)与传统神经网络不同,因为它引入了转移权重W来跨越时间传递信息。图4显示了必须在RNN中学习的三个加权矩阵。

图4

循环神经网络架构可以利用网络的先前状态来实现其优点。 理论上很好理解,但是你在这里必须要亲自动手做一下。让我们来吧!接下来将介绍如何使用TensorFlow的内置RNN模型。我们将使用这个RNN在现实世界的时间数据来预测未来!

3.实施循环神经网络

当我们实施RNN时,我们将使用TensorFlow。如图4所示,你不需要手动构建网络,因为TensorFlow库中已经支持一些鲁棒(robust)的RNN模型。 参考有关RNN的TensorFlow库信息,请参见https://www.tensorflow.org/tutorials/recurrent。 RNN的一种类型模型被称为长短期记忆网络(LSTM)。我觉得这是一个有趣的名字。它听起来也意味着:短期模式长期不会被遗忘。 LSTM的精确实现细节不在本文的范围之内。相信我,如果只学习LSTM模型会分散我们的注意力,因为它还没有确定的标准。 进一步阅读:为了了解如何从头开始执行LSTM,我建议你阅读以下的文章:https://apaszke.github.io/lstm-explained.html 我们现在开始我们的教程。首先从编写我们的代码开始,先创建一个新的文件,叫做simple_regression.py。导入相关的库,如步骤1所示。

步骤1:导入相关库

import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn

接着,定义一个类叫做SeriesPredictor。如步骤2所示,构造函数里面设置模型超参数,权重和成本函数。

步骤2:定义一个类及其构造函数

class SeriesPredictor:
     def __init__(self, input_dim, seq_size, hidden_dim=10):
        self.input_dim = input_dim //#A
        self.seq_size = seq_size  //#A
        self.hidden_dim = hidden_dim  //#A
        self.W_out = tf.Variable(tf.random_normal([hidden_dim, 1]),name='W_out') //#B
        self.b_out = tf.Variable(tf.random_normal([1]), name='b_out')  //#B
        self.x = tf.placeholder(tf.float32, [None, seq_size, input_dim]) //#B
        self.y = tf.placeholder(tf.float32, [None, seq_size]) //#B
        self.cost = tf.reduce_mean(tf.square(self.model() - self.y)) //#C
        self.train_op = tf.train.AdamOptimizer().minimize(self.cost) //#C
        self.saver = tf.train.Saver()  //#D


#A超参数。
#B权重变量和输入占位符。
#C成本优化器(cost optimizer)。
#D辅助操作。

接下来,我们使用TensorFlow的内置RNN模型,名为BasicLSTMCell。LSTM单元的隐藏维度是通过时间的隐藏状态的维度。我们可以使用该rnn.dynamic_rnn函数处理这个单元格数据,以检索输出结果。步骤3详细介绍了如何使用TensorFlow来实现使用LSTM的预测模型。

步骤3:定义RNN模型

def model(self):
         """
         :param x: inputs of size [T, batch_size, input_size]
         :param W: matrix of fully-connected output layer weights
         :param b: vector of fully-connected output layer biases
         """
         cell = rnn.BasicLSTMCell(self.hidden_dim)  #A
         outputs, states = tf.nn.dynamic_rnn(cell, self.x, dtype=tf.float32) #B
         num_examples = tf.shape(self.x)[0]
         W_repeated = tf.tile(tf.expand_dims(self.W_out, 0), [num_examples, 1, 1])#C
         out = tf.matmul(outputs, W_repeated) + self.b_out
         out = tf.squeeze(out)
         return out


#A创建一个LSTM单元。
#B运行输入单元,获取输出和状态的张量。
#C将输出层计算为完全连接的线性函数。

通过定义模型和成本函数,我们现在可以实现训练函数,该函数学习给定示例输入/输出对的LSTM权重。如步骤4所示,你打开会话并重复运行优化器。 另外,你可以使用交叉验证来确定训练模型的迭代次数。在这里我们假设固定数量的epocs。 训练后,将模型保存到文件中,以便稍后加载使用。

步骤4:在一个数据集上训练模型

def train(self, train_x, train_y):
         with tf.Session() as sess:
             tf.get_variable_scope().reuse_variables()
             sess.run(tf.global_variables_initializer())
             for i in range(1000):  #A
                    mse = sess.run([self.train_op, self.cost], feed_dict={self.x: train_x, self.y: train_y})
                 if i % 100 == 0:
                     print(i, mse)
             save_path = self.saver.save(sess, 'model.ckpt')
             print('Model saved to {}'.format(save_path))


#A训练1000次

我们的模型已经成功地学习了参数。接下来,我们想评估利用其他数据来评估以下预测模型的性能。步骤5加载已保存的模型,并通过馈送一些测试数据以此来运行模型。如果学习的模型在测试数据上表现不佳,那么我们可以尝试调整LSTM单元格的隐藏维数。

步骤5:测试学习的模型

def test(self, test_x):
         with tf.Session() as sess:
             tf.get_variable_scope().reuse_variables()
             self.saver.restore(sess, './model.ckpt')
             output = sess.run(self.model(), feed_dict={self.x: test_x})
             print(output)

但为了完善自己的工作,让我们组成一些数据,并尝试训练预测模型。在步骤6中,我们将创建输入序列,称为train_x,和相应的输出序列,称为train_y。

步骤6训练并测试一些虚拟数据

if __name__ == '__main__':
     predictor = SeriesPredictor(input_dim=1, seq_size=4, hidden_dim=10)
     train_x = [[[1], [2], [5], [6]],
                [[5], [7], [7], [8]],
                [[3], [4], [5], [7]]]
     train_y = [[1, 3, 7, 11],
                [5, 12, 14, 15],
                [3, 7, 9, 12]]
     predictor.train(train_x, train_y)
       test_x = [[[1], [2], [3], [4]],  #A
               [[4], [5], [6], [7]]]  #B
     predictor.test(test_x)


#A预测结果应为1,3,5,7。
#B预测结果应为4,9,11,13。

你可以将此预测模型视为黑盒子,并用现实世界的时间数据进行测试。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.01.14 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档