Python入门之Python中的logging模块

基本用法

下面的代码展示了logging最基本的用法。

import logging
import sys
 
# 获取logger实例,如果参数为空则返回root logger
logger = logging.getLogger("AppName")
 
# 指定logger输出格式
formatter = logging.Formatter('%(asctime)s %(levelname)-8s: %(message)s')
 
# 文件日志
file_handler = logging.FileHandler("test.log")
file_handler.setFormatter(formatter)  # 可以通过setFormatter指定输出格式
 
# 控制台日志
console_handler = logging.StreamHandler(sys.stdout)
console_handler.formatter = formatter  # 也可以直接给formatter赋值
 
# 为logger添加的日志处理器
logger.addHandler(file_handler)
logger.addHandler(console_handler)
 
# 指定日志的最低输出级别,默认为WARN级别
logger.setLevel(logging.INFO)
 
# 输出不同级别的log
logger.debug('this is debug info')
logger.info('this is information')
logger.warn('this is warning message')
logger.error('this is error message')
logger.fatal('this is fatal message, it is same as logger.critical')
logger.critical('this is critical message')
 
# 2016-10-08 21:59:19,493 INFO    : this is information
# 2016-10-08 21:59:19,493 WARNING : this is warning message
# 2016-10-08 21:59:19,493 ERROR   : this is error message
# 2016-10-08 21:59:19,493 CRITICAL: this is fatal message, it is same as logger.critical
# 2016-10-08 21:59:19,493 CRITICAL: this is critical message
 
# 移除一些日志处理器
logger.removeHandler(file_handler)

 除了这些基本用法,还有一些常见的小技巧可以分享一下。

格式化输出日志

# 格式化输出
 
service_name = "Booking"
logger.error('%s service is down!' % service_name)  # 使用python自带的字符串格式化,不推荐
logger.error('%s service is down!', service_name)  # 使用logger的格式化,推荐
logger.error('%s service is %s!', service_name, 'down')  # 多参数格式化
logger.error('{} service is {}'.format(service_name, 'down')) # 使用format函数,推荐
 
# 2018-03-08 21:59:19,493 ERROR   : Booking service is down!

记录异常信息

当你使用logging模块记录异常信息时,不需要传入该异常对象,只要你直接调用logger.error() 或者 logger.exception()就可以将当前异常记录下来。

# 记录异常信息
 
try:
    1 / 0
except:
    # 等同于error级别,但是会额外记录当前抛出的异常堆栈信息
    logger.exception('this is an exception message')
 
# 2016-10-08 21:59:19,493 ERROR   : this is an exception message
# Traceback (most recent call last):
#   File "D:/Git/py_labs/demo/use_logging.py", line 45, in 
#     1 / 0
# ZeroDivisionError: integer division or modulo by zero

logging配置要点

GetLogger()方法

这是最基本的入口,该方法参数可以为空,默认的logger名称是root,如果在同一个程序中一直都使用同名的logger,其实会拿到同一个实例,使用这个技巧就可以跨模块调用同样的logger来记录日志。

另外你也可以通过日志名称来区分同一程序的不同模块,比如这个例子。

logger = logging.getLogger("App.UI")
logger = logging.getLogger("App.Service")

Formatter日志格式

Formatter对象定义了log信息的结构和内容,构造时需要带两个参数:

  • 一个是格式化的模板fmt,默认会包含最基本的level和 message信息
  • 一个是格式化的时间样式datefmt,默认为 2003-07-08 16:49:45,896 (%Y-%m-%d %H:%M:%S)

fmt中允许使用的变量可以参考下表。

  • %(name)s Logger的名字
  • %(levelno)s 数字形式的日志级别
  • %(levelname)s 文本形式的日志级别
  • %(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
  • %(filename)s 调用日志输出函数的模块的文件名
  • %(module)s 调用日志输出函数的模块名|
  • %(funcName)s 调用日志输出函数的函数名|
  • %(lineno)d 调用日志输出函数的语句所在的代码行
  • %(created)f 当前时间,用UNIX标准的表示时间的浮点数表示|
  • %(relativeCreated)d 输出日志信息时的,自Logger创建以来的毫秒数|
  • %(asctime)s 字符串形式的当前时间。默认格式是“2003-07-08 16:49:45,896”。逗号后面的是毫秒
  • %(thread)d 线程ID。可能没有
  • %(threadName)s 线程名。可能没有
  • %(process)d 进程ID。可能没有
  • %(message)s 用户输出的消息

SetLevel 日志级别

Logging有如下级别: DEBUG,INFO,WARNING,ERROR,CRITICAL 默认级别是WARNING,logging模块只会输出指定level以上的log。这样的好处, 就是在项目开发时debug用的log,在产品release阶段不用一一注释,只需要调整logger的级别就可以了,很方便。

Handler 日志处理器

最常用的是StreamHandler和FileHandler, Handler用于向不同的输出端打log。 Logging包含很多handler, 可能用到的有下面几种

  • StreamHandler instances send error messages to streams (file-like objects).
  • FileHandler instances send error messages to disk files.
  • RotatingFileHandler instances send error messages to disk files, with support for maximum log file sizes and log file rotation.
  • TimedRotatingFileHandler instances send error messages to disk files, rotating the log file at certain timed intervals.
  • SocketHandler instances send error messages to TCP/IP sockets.
  • DatagramHandler instances send error messages to UDP sockets.
  • SMTPHandler instances send error messages to a designated email address.

Configuration 配置方法

logging的配置大致有下面几种方式。

  1. 通过代码进行完整配置,参考开头的例子,主要是通过getLogger方法实现。
  2. 通过代码进行简单配置,下面有例子,主要是通过basicConfig方法实现。
  3. 通过配置文件,下面有例子,主要是通过 logging.config.fileConfig(filepath)
logging.basicConfig

basicConfig()提供了非常便捷的方式让你配置logging模块并马上开始使用,可以参考下面的例子。具体可以配置的项目请查阅官方文档

import logging
 
logging.basicConfig(filename='example.log',level=logging.DEBUG)
logging.debug('This message should go to the log file')
 
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
logging.debug('This message should appear on the console')
 
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p')
logging.warning('is when this event was logged.')

备注: 其实你甚至可以什么都不配置直接使用默认值在控制台中打log,用这样的方式替换print语句对日后项目维护会有很大帮助。

通过文件配置logging

如果你希望通过配置文件来管理logging,可以参考这个官方文档。在log4net或者log4j中这是很常见的方式。

# logging.conf
[loggers]
keys=root
 
[logger_root]
level=DEBUG
handlers=consoleHandler
#,timedRotateFileHandler,errorTimedRotateFileHandler
 
#################################################
[handlers]
keys=consoleHandler,timedRotateFileHandler,errorTimedRotateFileHandler
 
[handler_consoleHandler]
class=StreamHandler
level=DEBUG
formatter=simpleFormatter
args=(sys.stdout,)
 
[handler_timedRotateFileHandler]
class=handlers.TimedRotatingFileHandler
level=DEBUG
formatter=simpleFormatter
args=('debug.log', 'H')
 
[handler_errorTimedRotateFileHandler]
class=handlers.TimedRotatingFileHandler
level=WARN
formatter=simpleFormatter
args=('error.log', 'H')
 
#################################################
[formatters]
keys=simpleFormatter, multiLineFormatter
 
[formatter_simpleFormatter]
format= %(levelname)s %(threadName)s %(asctime)s:   %(message)s
datefmt=%H:%M:%S
 
[formatter_multiLineFormatter]
format= ------------------------- %(levelname)s -------------------------
 Time:      %(asctime)s
 Thread:    %(threadName)s
 File:      %(filename)s(line %(lineno)d)
 Message:
 %(message)s
 
datefmt=%Y-%m-%d %H:%M:%S

假设以上的配置文件放在和模块相同的目录,代码中的调用如下。

import os
filepath = os.path.join(os.path.dirname(__file__), 'logging.conf')
logging.config.fileConfig(filepath)
return logging.getLogger()

日志重复输出的坑

你有可能会看到你打的日志会重复显示多次,可能的原因有很多,但总结下来无非就一个,日志中使用了重复的handler。

第一坑

import logging
 
logging.basicConfig(level=logging.DEBUG)
 
fmt = '%(levelname)s:%(message)s'
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(fmt))
logging.getLogger().addHandler(console_handler)
 
logging.info('hello!')
 
# INFO:root:hello!
# INFO:hello!

上面这个例子出现了重复日志,因为在第3行调用basicConfig()方法时系统会默认创建一个handler,如果你再添加一个控制台handler时就会出现重复日志。

第二坑

import logging
 
def get_logger():
    fmt = '%(levelname)s:%(message)s'
    console_handler = logging.StreamHandler()
    console_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger('App')
    logger.setLevel(logging.INFO)
    logger.addHandler(console_handler)
    return logger
 
def call_me():
    logger = get_logger()
    logger.info('hi')
 
call_me()
call_me()
 
# INFO:hi
# INFO:hi
# INFO:hi

在这个例子里hi居然打印了三次,如果再调用一次call_me()呢?我告诉你会打印6次。why? 因为你每次调用get_logger()方法时都会给它加一个新的handler,你是自作自受。正常的做法应该是全局只配置logger一次。

第三坑

import logging
 
def get_logger():
    fmt = '%(levelname)s: %(message)s'
    console_handler = logging.StreamHandler()
    console_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger('App')
    logger.setLevel(logging.INFO)
    logger.addHandler(console_handler)
    return logger
 
def foo():
    logging.basicConfig(format='[%(name)s]: %(message)s')
    logging.warn('some module use root logger')
 
def main():
    logger = get_logger()
    logger.info('App start.')
    foo()
    logger.info('App shutdown.')
 
main()
 
# INFO: App start.
# [root]: some module use root logger
# INFO: App shutdown.
# [App]: App shutdown.

为嘛最后的App shutdown打印了两次?所以在Stackoverflow上很多人都问,我应该怎么样把root logger关掉,root logger太坑爹坑妈了。只要你在程序中使用过root logger,那么默认你打印的所有日志都算它一份。上面的例子没有什么很好的办法,我建议你招到那个没有经过大脑就使用root logger的人,乱棍打死他或者开除他。

如果你真的想禁用root logger,有两个不是办法的办法:

logging.getLogger().handlers = []  # 删除所有的handler
logging.getLogger().setLevel(logging.CRITICAL)  # 将它的级别设置到最高

小结

Python中的日志模块作为标准库的一部分,功能还是比较完善的。个人觉得上手简单,另外也支持比如过滤,文件锁等高级功能,能满足大多数项目需求。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏xingoo, 一个梦想做发明家的程序员

Java程序员的日常——经验贴(纯干货)二

继昨天的经验贴,今天的工作又收获不少。 windows下编辑器会给文件添加BOM 在windows的编辑器中,为了区分编码,通常会添加一个BOM标记。比如...

22590
来自专栏一个会写诗的程序员的博客

8.8 Spring Boot静态资源处理小结

当使用Spring Boot来开发一个完整的系统时,我们往往需要用到前端页面,这就不可或缺地需要访问到静态资源,比如图片、css、js等文件。

17730
来自专栏JAVA高级架构

Java面试分享(题目+答案)

34630
来自专栏JAVA高级架构

spring和springMVC的面试问题总结

1.Spring中AOP的应用场景、Aop原理、好处? 答:AOP--Aspect Oriented Programming面向切面编程;用来封装横切关注点,具...

37590
来自专栏java 成神之路

Spring mvc DispatchServlet 实现机制

305100
来自专栏java学习

你竟敢说你懂Spring框架?有可能你是没看到这些...(上)

所以,特地去搜刮了一些关于spring的面试题,希望能帮助各位同学在升职加薪的路上,一去不复返。

13120
来自专栏Python

利用Python imaplib和email模块 读取邮件文本内容及附件内容

51160
来自专栏云霄雨霁

Java虚拟机--(互斥同步与非阻塞同步)和锁优化

22240
来自专栏个人分享

Spark Netty与Jetty (源码阅读十一)

  spark呢,对Netty API又做了一层封装,那么Netty是什么呢~是个鬼。它基于NIO的服务端客户端框架,具体不再说了,下面开始。

18840
来自专栏JAVA同学会

Zookeeper应用之——栅栏(barrier)

barrier的作用是所有的线程等待,知道某一时刻,锁释放,所有的线程同时执行。举一个生动的例子,比如跑步比赛,所有 运动员都要在起跑线上等待,直到枪声响后,所...

8910

扫码关注云+社区

领取腾讯云代金券