专栏首页北京马哥教育27个机器学习图表,帮你作弊一般飞速成长!

27个机器学习图表,帮你作弊一般飞速成长!

今天分享一篇机器学习的文章。翻了一半,发现Linux中国已经翻译过了。。。干脆搬过来,还有一个姊妹篇《My Curated List of AI and Machine Learning Resources from Around the Web》,明天准备发这个。

原文地址是:Cheat Sheet of Machine Learning and Python (and Math) Cheat Sheets

译文地址是:https://linux.cn/article-8754-1.html

机器学习Machine Learning有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。

机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在 2017 年 6 月 1 日时,它们还是很潮的。

如果你想要这些图表,你无需向我一样一张张下载,只需要从这里点击下载就可以了。

如果你喜欢这篇文章,那就分享给更多人,如果你想感谢我,就到原帖地址点个赞吧。

机器学习

这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。

神经网络架构

来源: http://www.asimovinstitute.org/neural-network-zoo/

微软 Azure 算法流程图

来源: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

用于微软 Azure 机器学习工作室的机器学习算法:

SAS 算法流程图

来源: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

SAS:我应该使用哪个机器学习算法?:

算法总结

来源: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms

机器学习算法指引:

来源: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/

已知的机器学习算法哪个最好?:

算法优劣

来源: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

Python

自然而然,也有许多在线资源是针对 Python 的,这一节中,我仅包括了我所见过的最好的那些小抄。

算法

来源: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/

Python 基础

来源: http://datasciencefree.com/python.pdf

来源: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA

Numpy

来源: https://www.dataquest.io/blog/numpy-cheat-sheet/

来源: http://datasciencefree.com/numpy.pdf

来源: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb

Pandas

来源: http://datasciencefree.com/pandas.pdf

来源: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb

Matplotlib

来源: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb

Scikit Learn

来源: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk

来源: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html

来源: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb

Tensorflow

来源: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

Pytorch

来源: https://github.com/bfortuner/pytorch-cheatshee

数学

如果你希望了解机器学习,那你就需要彻底地理解统计学(特别是概率)、线性代数和一些微积分。我在本科时辅修了数学,但是我确实需要复习一下了。这些小抄提供了机器学习算法背后你所需要了解的大部分数学知识。

概率

来源: http://www.wzchen.com/s/probability_cheatsheet.pdf

线性代数

来源: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pd

统计学

来源: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pd

微积分

来源: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N


本文分享自微信公众号 - 马哥Linux运维(magedu-Linux),作者:Linux中国

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-08-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Kubernetes集群使用网络存储NFS

    NFS即网络文件系统Network File System,它是一种分布式文件系统协议,最初是由Sun MicroSystems公司开发的类Unix操作系统之上...

    小小科
  • 使用Heapster和Splunk监控Kubernetes运行性能

    作者:naughty Kubernetes已经成为容器编排的事实上的王者,连Docker都已经向K8s女王大人低头。对于Kubernetes的cluster的...

    小小科
  • 开源爱好者必看!开源许可证基础知识扫盲

    作为一个开发者,如果你打算开源自己的代码,千万不要忘记,选择一种开源许可证(license)。

    小小科
  • 正在研究机器学习?我们帮你准备了27个小抄…

    机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超...

    CDA数据分析师
  • 值得收藏的27个机器学习的小抄

    机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超...

    IT派
  • 资源 | 全机器学习和Python的27个速查表(完整版)

    大数据文摘
  • 可能是史上最全机器学习和Python速查表(附下载链接)

    来源:网路冷眼 作者:Hanson 本文长度为680字,建议阅读5分钟 本文为你分享有关机器学习、Python和相关数学知识的速查表大全。 机器学习有很多方面。...

    数据派THU
  • 值得收藏的27个机器学习的小抄

    昱良
  • GoCN每日新闻(2019-09-23)

    1. 查看 Go 的代码优化过程 http://xargin.com/go-compiler-opt

    landv
  • 卷积骚操作-Split to Be Slim: An Overlooked Redundancy in Vanilla Convolution

    Code: https://github.com/qiulinzhang/SPConv.pytorch

    绝命生

扫码关注云+社区

领取腾讯云代金券