tf.variable和tf.get_Variable以及tf.name_scope和tf.variable_scope的区别

在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型)、或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量。另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要。 ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个函数来实现:==


一、tf.Variable(),tf.get_variable()的作用与区别:

tf.Variable()和tf.get_variable()都是用于在一个name_scope下面获取或创建一个变量的两种方式,区别在于:

  1. tf.Variable()会自动检测命名冲突并自行处理,但tf.get_variable()则遇到重名的变量创建且变量名没有设置为共享变量时,则会报错。
  2. tf.Variable()用于创建一个新变量,在同一个name_scope下面,可以创建相同名字的变量,底层实现会自动引入别名机制,两次调用产生了其实是两个不同的变量。 tf.get_variable()用于获取一个变量,并且不受name_scope的约束。当这个变量已经存在时,则自动获取;如果不存在,则自动创建一个变量。
二、tf.name_scope()与tf.variable_scope()的作用与区别:

tf.name_scope():主要用于管理一个图里面的各种op,返回的是一个以scope_name命名的context manager。一个graph会维护一个name_space的 堆,每一个namespace下面可以定义各种op或者子namespace,实现一种层次化有条理的管理,避免各个op之间命名冲突。

tf.variable_scope():一般与tf.name_scope()配合使用,用于管理一个graph中变量的名字,避免变量之间的命名冲突,tf.variable_scope()允许在一个variable_scope下面共享变量。

代码示例:

在 tf.name_scope下时,tf.get_variable()创建的变量名不受 name_scope 的影响,而且在未指定共享变量时,如果重名会报错,tf.Variable()会自动检测有没有变量重名,如果有则会自行处理。

import tensorflow as tf

with tf.name_scope('name_scope_x'):
    var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
    var3 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
    var4 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(var1.name, sess.run(var1))
    print(var3.name, sess.run(var3))
    print(var4.name, sess.run(var4))
# 输出结果:
# var1:0 [-0.30036557]   可以看到前面不含有指定的'name_scope_x'
# name_scope_x/var2:0 [ 2.]
# name_scope_x/var2_1:0 [ 2.]  可以看到变量名自行变成了'var2_1',避免了和'var2'冲突

如果使用tf.get_variable()创建变量,且没有设置共享变量,重名时会报错

import tensorflow as tf

with tf.name_scope('name_scope_1'):
    var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
    var2 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(var1.name, sess.run(var1))
    print(var2.name, sess.run(var2))

# ValueError: Variable var1 already exists, disallowed. Did you mean 
# to set reuse=True in VarScope? Originally defined at:
# var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)

所以要共享变量,需要使用tf.variable_scope()

import tensorflow as tf

with tf.variable_scope('variable_scope_y') as scope:
    var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32)
    scope.reuse_variables()  # 设置共享变量
    var1_reuse = tf.get_variable(name='var1')
    var2 = tf.Variable(initial_value=[2.], name='var2', dtype=tf.float32)
    var2_reuse = tf.Variable(initial_value=[2.], name='var2', dtype=tf.float32)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(var1.name, sess.run(var1))
    print(var1_reuse.name, sess.run(var1_reuse))
    print(var2.name, sess.run(var2))
    print(var2_reuse.name, sess.run(var2_reuse))
# 输出结果:
# variable_scope_y/var1:0 [-1.59682846]
# variable_scope_y/var1:0 [-1.59682846]   可以看到变量var1_reuse重复使用了var1
# variable_scope_y/var2:0 [ 2.]
# variable_scope_y/var2_1:0 [ 2.]

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏WebDeveloper

sass的高级用法

进入到Koala 安装目录 D:\Koala\rubygems\gems\sass-3.4.9\lib\sass修改 engine.rb 文件 在requir...

862
来自专栏深度学习之tensorflow实战篇

python 网页特征提取XPATH(两天玩转) 第一天

XPath 是一门在 XML 文档中查找信息的语言。XPath 用来在 XML 文档中对元素和属性进行遍历。关于xpath的说明文档可以参照 : XPATH基础...

4583
来自专栏应兆康的专栏

100个Numpy练习【1】

Numpy是Python做数据分析必须掌握的基础库之一,非常适合刚学习完Numpy基础的同学,完成以下习题可以帮助你更好的掌握这个基础库。

55115
来自专栏AI深度学习求索

算法图解|简单查找和二分查找算法

1874
来自专栏数据星河

建模常用的pandas语句

  pandas对象是Python常用的数据分析模块,它主要包括series对象,dataframe对象和index对象。每种对象都有自己所特有的方法和属性。今...

450
来自专栏一“技”之长

一个移动开发者的Mock数据之路 原

    在前端开发中,很大一部分工作都是将后台数据获取到后展示在前端界面上。如果接口是现成的,这个过程还相对容易一些,但是如果接口的开发和前端开发是同时进行的,...

731
来自专栏应兆康的专栏

100个Numpy练习【2】

Numpy是Python做数据分析必须掌握的基础库之一,非常适合刚学习完Numpy基础的同学,完成以下习题可以帮助你更好的掌握这个基础库。

4509
来自专栏debugeeker的专栏

《coredump问题原理探究》Linux x86版5.2节C风格数据结构内存布局之基本数据类型

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xuzhina/article/detai...

731
来自专栏尾尾部落

[剑指offer] 构建乘积数组

给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],其中B中的元素B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*....

1243
来自专栏AI研习社

将 Tensorflow 图序列化以及反序列化的巧妙方法

将类中的字段和 graph 中的 tensorflow 变量进行自动绑定,并且在不需要手动将变量从 graph 中取出的情况下进行重存,听起来有没有很炫酷?

1514

扫码关注云+社区

领取腾讯云代金券