学界 | 基于概率隐层模型的购物搭配推送:阿里巴巴提出新型用户偏好预测模型

选自 Alibaba Group

作者:Huasha Zhao等

机器之心报道

推送控制是电商应用中的关键组成部分,它与用户的数量增长与参与度显著相关。推送通知的有效性通常以消息被打开比例来衡量。推送消息可以包含推荐的产品、优惠信息等,但由于显示空间的限制,通常我们只能在推送消息中显示一个或两个项目。近日,阿里巴巴的研究者们提出了一种混合模型方法,用于预测用户购买后补充产品推荐任务中的推送消息打开率。该研究的论文已被 SIGIR 2017 大会接收。

论文:Recommending Complementary Products in E-Commerce Push Notifications with a Mixture Model Approach

论文链接:https://arxiv.org/abs/1707.08113

这篇文章中,阿里研究者们对电商领域营销推送场景进行了点击率的优化。营销推送场景和传统电商推荐场景有很多类似的地方,但也有所不同。首先,营销推送的点击率受文案影响很大,和用户直接相关的文案的点击率会明显高于通用的推送文案;其次,每次营销推送只有一个展示坑位,因为对推送商品的准确度要求更高。

为解决第一个问题,我们进行「购物搭配」场景的推荐。购物搭配场景推送一个和用户已购买商品的搭配商品,比如当用户买了高级茶壶后对上好茶叶进行推送(下图第二个推送信息)。购物搭配的好处是文案中可以透出用户已购商品,消息可以和用户建立强烈的 attachment,提升消息打开率。

为寻找搭配商品对,我们定义如下两个指标:

1)同时购买分数(Co-Purchase Graph)

2) 看了又买分数(View-and-then-Purchase Graph)

第一个指标衡量了两个商品之间的互补性(complementarity),第二个指标衡量了两个商品的替代性(substitutivity)。购物搭配场景下,我们希望寻找高互补性、低替代性的商品对进行推荐。因此,我们把商品对「搭配性」的得分定义为:

这个分数是我们推荐模型中的一个重要特征。

为了解决推荐准确性的问题。我们对用户分层进行更细致的刻画。我们的主要思想是基于用户行为对用户的向量表示(Embeddings)进行学习,然后我们用这些向量表示对用户的行为进行预测。向量表示可以理解为对用户在高维度的一个量化的抽象表示。

向量表示的好处是可以更精准,更灵活的对目标进行表达。举个例子,我们对用户的描述不仅仅局限于年龄、消费能力等人可以 Intuitively 容易想到的维度,人工智能可以自动从消费者数据中学习到更全面更抽象的维度,比如用户对推荐平台的依赖程度,用户对选择商品的创新性等。

用户向量的学习我们采用的是概率隐层模型(Probabilistic Latent Class Modeling)。首先我们定义用户点击模型如下:

这个模型分为两层,第一层是隐层用来刻画用户在高维度下的分层,采用多维逻辑回归分类的形式。

第二层是点击率预测模型。我们这里选择了一个二维逻辑回归模型。不过可以很容易的扩展使用深度神经网络。

我们要在已知用户特征和点击数据的条件下估计模型参数。我们采用经典的 EM(Expectation-Maximization)算法。

EM 算法需要先求解 Q 函数:

为优化 Q 函数我们对参数进行迭代优化如下:

上面两个更新很容易通过 Gradient Decent 方法求解。

下图是我们对求解模型的一个解释。我们发现高活跃用户更加看中自己的倾向,预测模型的权重在用户偏好类的特征中高(high model weights on user preference features);低活跃用户更加依赖于平台的推荐,更喜欢平台选择的搭配性好的商品,预测模型权重在商品搭配性的特征权重高 (high model weights on )。这可以直观的理解为深度用户在选择商品上更有自己主见,而新手更依赖于平台。

目前该工作在线上取得了不错的效果,购物搭配的推送推荐场景上看到大约 50% 的点击率提升。

更广义的来讲,这项技术给行业带来的好处的是可以更精准和全面的刻画用户,进一步推广以用来描述商品、资讯、视频等其他目标。该技术可以帮助使我们的营销推荐更友好(了解用户),同时从商业上提高转化率(高点击率)。

本文为机器之心报道,转载请联系本公众号获得授权。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2017-08-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

AI 技术讲座精选:深度学习将彻底改变人们与技术交互的方式

【AI100 导读】在最近的六年当中,深度学习技术使得机器在物理世界的认知能力方面取得了巨大的进步。这只是一个开始。在未来几年,创业公司和一般的大型科技巨头都会...

3979
来自专栏AI科技大本营的专栏

AI 技术讲座精选:深度学习和人工智能技术是如何加速领域驱动设计的

【AI100 导读】你的代码库与企业模型是否匹配?深度学习和其他人工智能技术正在帮助领域驱动设计与组织业务目标进行匹配,这是如何做到的呢? ? 当下,人工智能...

3415
来自专栏AI科技大本营的专栏

​产品经理如何学机器学习——一篇以产品为中心的机器学习概论

我现在常常听说产品负责人/经理、技术经理和设计师通过网上课程学习机器学习。我一直鼓励这种做法——实际上,我本人曾学习过那些课程(并且在博客上发表了相关内容)。 ...

3968
来自专栏AI科技评论

动态 | 谷歌语义理解框架SyntaxNet升级 开启无数可能性

在 AI 语义理解领域,谷歌一直不遗余力地进行研发投入。 对于普通用户而言,2015 年发布的基于深度神经网络的谷歌智能邮件回复,2016 年上线的神经机器翻译...

30012
来自专栏机器之心

学界 | 北京大学研究者提出注意力通信模型ATOC,助力多智能体协作

2124
来自专栏LhWorld哥陪你聊算法

【强化学习篇】--强化学习从初识到应用

强化学习是学习一个最优策略(policy),可以让本体(agent)在特定环境(environment)中,根据当前的状态(state),做出行动(action...

1262
来自专栏人工智能

建立属于你的智能客服

本文首发于GitChat,原作者王晓雷,经作者同意授权转发。转载请联系作者或GitChat。 背景 很多人问,对话式交互系统就是语音交互么?当然不是。语音交互本...

2707
来自专栏ATYUN订阅号

在视频网站Netflix上进行个性化算法的创新 迎合你的口味排序视频

Netflix是一家美国在线视频网站。Netflix的视频体验是由一系列排名算法(Ranking Algorithm)组成的,每一种算法都针对不同的目的进行优化...

3225
来自专栏鸿的学习笔记

Machine Learning at Quora(简要版)

自从我一年前加入Quora,我一直在谈论在这里的所有的非常有趣的关于机器学习的挑战。然而,当我上周参加并在MLConf发言时,我很惊讶,许多和我谈过的人仍然没有...

862
来自专栏ATYUN订阅号

【指南】非技术人员的机器学习指南:如何轻松地进入机器学习

世界末日 首先,我们听说机器人正在做蓝领工作。 ? 然后,我们发现白领工作也不安全。 ? 在我们恐慌我们将要失业,我们发现这些机器人正在背后议论我们。 ? 可能...

3666

扫码关注云+社区