入门 | 完全云端运行:使用谷歌CoLaboratory训练神经网络

选自Medium

作者:Sagar Howal

机器之心编译

参与:路雪

Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果。它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行。Colaboratory 笔记本存储在 Google 云端硬盘 (https://drive.google.com/) 中,并且可以共享,就如同您使用 Google 文档或表格一样。Colaboratory 可免费使用。本文介绍如何使用 Google CoLaboratory 训练神经网络。

工具链接:https://colab.research.google.com/

谷歌近期上线了协作写代码的内部工具 Google CoLaboratory。Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果。它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行。

Colaboratory 笔记本存储在 Google 云端硬盘 (https://drive.google.com/) 中,并且可以共享,就如同您使用 Google 文档或表格一样。Colaboratory 可免费使用。

CoLaboratory

首先,访问 CoLaboratory 网站(http://g.co/colab),注册后接受使用该工具的邀请。确认邮件通常需要一天时间才能返回你的邮箱。CoLaboratory 允许使用谷歌虚拟机执行机器学习任务和构建模型,无需担心计算力的问题,而且它是免费的。

打开 CoLaboratory,会出现一个「Hello, Colaboratory」文件,包含一些基本示例。建议尝试一下。

使用 CoLaboratory 可以在 Jupyter Notebook 上写代码。写好后执行 (Shift + Enter),代码单元下方就会生成输出。

除了写代码,CoLaboratory 还有一些技巧(trick)。你可以在 notebook 中 shell 命令前加上「!」。如:!pip install -q keras。这样你就可以很大程度上控制正在使用的谷歌虚拟机。点击左上方(菜单栏下)的黑色按钮就可以找到它们的代码片段。

本文旨在展示如何使用 CoLaboratory 训练神经网络。我们将展示一个在威斯康星乳腺癌数据集上训练神经网络的示例,数据集可在 UCI Machine Learning Repository(http://archive.ics.uci.edu/ml/datasets)获取。本文的示例相对比较简单。

本文所用的 CoLaboratory notebook 链接:https://colab.research.google.com/notebook#fileId=1aQGl_sH4TVehK8PDBRspwI4pD16xIR0r

深度学习

深度学习是一种机器学习技术,它使用的计算技术一定程度上模仿了生物神经元的运行。各层中的神经元网络不断将信息从输入传输到输出,直到其权重调整到可以生成反映特征和目标之间底层关系的算法。

要想更多地了解神经网络,推荐阅读这篇论文《Artificial Neural Networks for Beginners》(https://arxiv.org/pdf/cs/0308031.pdf)。

代码

问题:研究者获取乳房肿块的细针穿刺(FNA),然后生成数字图像。该数据集包含描述图像中细胞核特征的实例。每个实例包括诊断结果:M(恶性)或 B(良性)。我们的任务是在该数据上训练神经网络根据上述特征诊断乳腺癌。

打开 CoLaboratory,出现一个新的 untitled.ipynb 文件供你使用。

谷歌允许使用其服务器上的一台 linux 虚拟机,这样你可以访问终端为项目安装特定包。如果你只在代码单元中输入 !ls 命令(记得命令前加!),那么你的虚拟机中会出现一个 datalab 文件夹。

我们的任务是将数据集放置到该机器上,这样我们的 notebook 就可以访问它。你可以使用以下代码:

#Uploading the Dataset 
from google.colab import files
uploaded = files.upload()

#Save uploaded file on the Virtual Machine's 
#Thanks to user3800642 from StackOverflow 

with open("breast_cancer.csv", 'w') as f:
    f.write(uploaded[uploaded.keys()[0]])

输入 !ls 命令,检查机器上是否有该文件。你将看到 datalab 文件夹和 breast_cancer_data.csv 文件。

数据预处理:

现在数据已经在机器上了,我们使用 pandas 将其输入到项目中。

import numpy as np
import pandas as pd

#Importing dataset
dataset = pd.read_csv('breast_cancer.csv')

#Check the first 5 rows of the dataset. 
    dataset.head(5)

CoLaboratory 上的输出结果图示。

现在,分割因变量(Dependent Variables)和自变量(Independent Variables)。

#Seperating dependent and independent variables. 

X = dataset.iloc[:, 2:32].values  #Note: Exclude Last column with all NaN values.
y = dataset.iloc[:, 1].values

Y 包含一列,其中的「M」和「B」分别代表「是」(恶性)和「否」(良性)。我们需要将其编码成数学形式,即「1」和「0」。可以使用 Label Encoder 类别完成该任务。

#Encoding Categorical Data
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()

y = labelencoder.fit_transform(y)

(如果数据类别多于两类,则使用 OneHotEncoder)

现在数据已经准备好,我们将其分割成训练集和测试集。在 Scikit-Learn 中使用 train_test_split 可以轻松完成该工作。

#Splitting into Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)

参数 test_size = 0.2 定义测试集比例。这里,我们将训练集设置为数据集的 80%,测试集占数据集的 20%。

Keras

Keras 是一种构建人工神经网络的高级 API。它使用 TensorFlow 或 Theano 后端执行内部运行。要安装 Keras,必须首先安装 TensorFlow。CoLaboratory 已经在虚拟机上安装了 TensorFlow。使用以下命令可以检查是否安装 TensorFlow:

!pip show tensorflow

你还可以使用!pip install tensorflow==1.2,安装特定版本的 TensorFlow。

另外,如果你更喜欢用 Theano 后端,可以阅读该文档:https://keras.io/backend/。

安装 Keras:

!pip install -q keras

# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense

使用 Sequential 和 Dense 类别指定神经网络的节点、连接和规格。如上所示,我们将使用这些自定义网络的参数并进行调整。

为了初始化神经网络,我们将创建一个 Sequential 类的对象。

# Initialising the ANN
classifier = Sequential()

现在,我们要来设计网络。

对于每个隐藏层,我们需要定义三个基本参数:units、kernel_initializer 和 activation。units 参数定义每层包含的神经元数量。Kernel_initializer 定义神经元在输入数据上运行时的初始权重(详见 https://faroit.github.io/keras-docs/1.2.2/initializations/)。activation 定义数据的激活函数。

注意:如果现在这些项非常大也没事,很快就会变得更加清晰。

第一层:

16 个具备统一初始权重的神经元,激活函数为 ReLU。此外,定义参数 input_dim = 30 作为输入层的规格。注意我们的数据集中有 30 个特征列。

Cheat:

我们如何确定这一层的单元数?人们往往会说这需要经验和专业知识。对于初学者来说,一种简单方式是:x 和 y 的总和除以 2。如 (30+1)/2 = 15.5 ~ 16,因此,units = 16。

第二层:第二层和第一层一样,不过第二层没有 input_dim 参数。

输出层:由于我们的输出是 0 或 1,因此我们可以使用具备统一初始权重的单个单元。但是,这里我们使用 sigmoid 激活函数。

# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 16, kernel_initializer = 'uniform', activation = 'relu', input_dim = 30))

# Adding the second hidden layer
classifier.add(Dense(units = 16, kernel_initializer = 'uniform', activation = 'relu'))

# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

拟合:

运行人工神经网络,发生反向传播。你将在 CoLaboratory 上看到所有处理过程,而不是在自己的电脑上。

# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)

这里 batch_size 是你希望同时处理的输入量。epoch 指数据通过神经网络一次的整个周期。它们在 Colaboratory Notebook 中显示如下:

进行预测,构建混淆矩阵。

# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

训练网络后,就可以在 X_test set 上进行预测,以检查模型在新数据上的性能。在代码单元中输入和执行 cm 查看结果。

混淆矩阵

混淆矩阵是模型做出的正确、错误预测的矩阵表征。该矩阵可供个人调查哪些预测和另一种预测混淆。这是一个 2×2 的混淆矩阵。

混淆矩阵如下所示。[cm (Shift+Enter)]

上图表示:70 个真负类、1 个假正类、1 个假负类、42 个真正类。很简单。该平方矩阵的大小随着分类类别的增加而增加。

这个示例中的准确率几乎达到 100%,只有 2 个错误预测。但是并不总是这样。有时你可能需要投入更多时间,研究模型的行为,提出更好、更复杂的解决方案。如果一个网络性能不够好,你需要调整超参数来改进模型。

希望本文可以帮助你开始使用 Colaboratory。该教程的 Notebook 地址:https://colab.research.google.com/notebook#fileId=1aQGl_sH4TVehK8PDBRspwI4pD16xIR0r

原文链接:https://medium.com/@howal/neural-networks-with-google-colaboratory-artificial-intelligence-getting-started-713b5eb07f14

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2017-12-31

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

资源 | 谷歌全attention机器翻译模型Transformer的TensorFlow实现

选自GitHub 机器之心编译 参与:黄小天、Smith 谷歌前不久在 arXiv 上发表论文《Attention Is All You Need》,提出一种完...

50411
来自专栏人工智能头条

利用GPU和Caffe训练神经网络

1565
来自专栏BestSDK

13个Tensorflow实践案例,深度学习没有想象中那么难

关于深度学习,每个人都有自己的看法。有人说就是炼丹,得个准确率召回率什么的,拿到实际中,问问为什么,都答不上来。各种连代码都没写过的人,也纷纷表示这东西就是小孩...

51610
来自专栏大数据挖掘DT机器学习

用python实现K-近邻算法改进约会网站的配对效果

摘自:《机器学习实战》,用python编写的(需要matplotlib和numpy库)   海伦一直使用在线约会网站寻找合适自己的约会对象。尽管约会网站会推荐不...

3155
来自专栏ATYUN订阅号

使用Google的Quickdraw创建MNIST样式数据集!

对于那些运行深度学习模型的人来说,MNIST是无处不在的。手写数字的数据集有许多用途,从基准测试的算法(在数千篇论文中引用)到可视化,比拿破仑的1812年进军更...

4348
来自专栏FreeBuf

Kaggle:一套完整的网站流量预测模型

今天给大家推荐的是一个名叫Kaggle的网站流量预测项目,本项目采用Python语言开发,可以给大家的流量预测建模提供一些思路。 ? 数据模型 Kaggle的训...

4826
来自专栏信数据得永生

《Scikit-Learn与TensorFlow机器学习实用指南》第2章 一个完整的机器学习项目

1.1K20
来自专栏AI研习社

谷歌推出开源 Python 库“Tangent”,支持前向模式自动微分

日前,Google Research Blog 推出开源 Python 库“Tangent”。据介绍,这个库与现有的机器学习库相比,存在诸多优势,可以大大改善了...

3625
来自专栏机器之心

业界 | 谷歌开源「Tangent」:一个用于自动微分的源到源Python库(附API概述)

3438
来自专栏CSDN技术头条

利用GPU和Caffe训练神经网络

本文为利用GPU和Caffe训练神经网络的实战教程,介绍了根据Kaggle的“奥托集团产品分类挑战赛”的数据进行训练一种多层前馈网络模型的方法,如何将模型应用于...

21610

扫码关注云+社区

领取腾讯云代金券