Kafka简介及安装配置

Kafka简介及安装配置

一、简介

    Kafka是分布式发布-订阅消息系统。它最初由LinkedIn公司开发,使用Scala语言编写,之后成为Apache项目的一部分,目前是Apache的一个顶级项目。

    Kafka是一个分布式的、可分区的、可复制的消息系统。它提供了普通消息系统的功能,但具有自己独特的设计。

    它提供了类似于JMS(Java消息队列规范)的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现。

    kafka对消息保存时根据Topic进行归类,发送消息者称为Producer,消息接受者称为Consumer,此外kafka集群由多个kafka实例组成,每个实例(server)称为broker。

    无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。

    总结:

    Kafka是分布式消息队列,按topic分类存放数据,拥有Producer、Consumer、Broker三个角色,使用zookeeper做为集群的协调工具。

1、kafka的特点

1.高吞吐量

    理论上Kafka每秒可以生产约25万消息(50MB),每秒处理55万消息(110MB),生产环境中在这个速度上下浮动,这个速度就相当于硬盘IO的速度。

2.持久化数据存储

    可进行持久化操作。将消息持久化到磁盘,因此可用于批量消费,例如ETL,以及实时应用程序。通过将数据持久化到硬盘以及replication防止数据丢失。

3.分布式系统易于扩展

    所有的producer、broker和consumer都可以有多个,均为分布式的。无需停机即可扩展机器。

4.客户端维护状态

    消息被处理的状态是在consumer端维护,而不是由server端维护。当失败时能自动平衡。

二、基本概念

    Kafka将消息以topic为单位进行归纳。topic之间的数据是相互隔离的。

    将向Kafka topic发布消息的程序称为producers。

    将预订topics并消费消息的程序称为consumer。

    Kafka以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个broker。

    producers通过网络将消息发送到Kafka集群,集群向消费者提供消息。

    客户端和服务端通过TCP协议通信。Kafka提供了Java客户端,并且对多种语言都提供了支持。

1、Topic

一个topic是对一组消息的归纳。

1.分区

Kafka针对对每个topic的日志进行了分区。

kafka中的分区是负载均衡和失败恢复的基本单位。

2.offset

    每个分区都由一系列有序的、不可变的消息组成,这些消息被连续的追加到分区中。分区中的每个消息都有一个连续的序列号叫做offset,用来在分区中唯一标识一个消息。在一个可配置的时间段内,Kafka集群保留所有发布的消息,不管这些消息有没有被消费。

    比如,如果消息的保存策略被设置为2天,那么在一个消息被发布的两天时间内,它都是可以被消费的。过期之后它将被丢弃以释放空间。Kafka的性能是和数据量无关的常量级的,所以保留太多的数据并不是问题。

3.分区副本

    每个分区在Kafka集群的若干服务中都有副本,这样这些持有副本的服务可以共同处理数据和请求,副本数量是可以配置的。副本使Kafka具备了容错能力。

    每个分区都由一个服务器作为“leader”,零或若干服务器作为“followers”,leader负责处理消息的读和写,followers则去同步leader的数据,并对外提供读操作。如果leader down了,followers中的一台则会自动成为leader。

    集群中的每个服务器都会同时扮演两个角色:作为它所持有的一部分分区的leader,同时作为其他分区的followers,这样集群就据有较好的负载均衡。

    将日志分区可以达到以下目的:

    首先这使得每个日志的数量不会太大,可以在单个服务上保存。另外每个分区可以单独发布和消费,为并发操作topic提供了一种可能。

    分区是负载均衡失败恢复分布式数据存储的基本单元。

2、Producers

    Producer将消息发布到它指定的topic中,并负责决定发布到哪个分区。通常简单的由负载均衡机制随机选择分区,但也可以通过特定的分区函数选择分区。使用的更多的是第二种。

3、Consumers

    实际上每个consumer唯一需要维护的数据是消息在日志中的位置,也就是offset。这个offset由consumer来维护,一般情况下随着consumer不断的读取消息,这offset的值会不断增加,但其实consumer可以以任意的顺序读取消息,比如它可以将offset设置成为一个旧的值来重读之前的消息。

    以上特点的结合,使Kafka consumers非常的轻量级,它们可以在不对集群和其他consumer造成影响的情况下读取消息。你可以使用命令行来"tail"消息而不会对其他正在消费消息的consumer造成影响。

    消费消息通常有两种模式:队列模式(queuing)和发布-订阅模式(publish-subscribe)。

1.队列模式

    队列模式中,多个consumers可以同时从服务端读取消息,每个消息只被其中一个consumer读到。

    通俗的来讲,consumers之间是竞争关系,都在从borker中抢数据,而这个数据只有一份,谁抢到就是谁的。

2.发布订阅模式

    发布-订阅模式中消息被广播到所有的consumer中。这种模式之下,每个consumers都能得到相同的消息数据。

3.consumer group

    Consumers可以加入一个consumer group,此组就是用来实现以上两种模式的。

1>组内

    如果所有的consumer都在一个组中,这就成为了传统的队列模式,在各consumer中实现负载均衡。

    组内的Consumer是处在队列模式下,共同竞争一个topic内的消息,topic中的消息将被分发到组中的一个成员中,同一条消息只发往其中的一个消费者。同一组中的consumer可以在不同的程序中,也可以在不同的机器上。

2>组间

    如果所有的consumer都不在不同的组中,这就成为了发布-订阅模式,所有的消息都被分发到所有的consumer中。

    而如果有多个Consumer group来消费相同的Topic中的消息,则组和组之间使用的就是发布订阅模式,是一个共享数据的状态。每一个组都可以获取到这个主题中的所有消息。

3>应用

    常见的应用方式是,每个topic都有若干数量的consumer组来消费,每个组都是一个逻辑上的“订阅者”,为了容错和更好的稳定性,每个组都由若干consumer组成,在组内竞争实现负载均衡。实现了组内竞争负载均衡,组间共享互不影响,这其实就是一个发布-订阅模式,只不过订阅者是个组而不是单个consumer。 

4、与传统消息队列对比

    相比传统的消息系统,Kafka可以很好的保证有序性。

    传统的队列在服务器上保存有序的消息,如果多个consumers同时从这个服务器消费消息,服务器就会以消息存储的顺序向consumer分发消息。虽然服务器按顺序发布消息,但是消息是被异步的分发到各consumer上,所以当消息到达时可能已经失去了原来的顺序,这意味着并发消费将导致顺序错乱。为了避免故障,这样的消息系统通常使用“专用consumer”的概念,其实就是只允许一个消费者消费消息,当然这就意味着失去了并发性。

    在这方面Kafka做的更好,通过分区的概念,Kafka可以在多个consumer组并发的情况下提供较好的有序性和负载均衡。将每个分区分只分发给一个consumer组,这样一个分区就只被这个组的一个consumer消费,就可以顺序的消费这个分区的消息。因为有多个分区,依然可以在多个consumer组之间进行负载均衡。注意consumer组的数量不能多于分区的数量,也就是有多少分区就允许多少并发消费。

    Kafka只能保证一个分区之内消息的有序性,在不同的分区之间是不可以的,这已经可以满足大部分应用的需求。如果需要topic中所有消息的有序性,那就只能让这个topic只有一个分区,当然也就只有一个consumer组消费它。

5、选择Kafka的理由

    为什么大数据环境下的消息队列常选择kafka?

    分布式存储数据,提供了更好的性能、可靠性、可扩展能力。

    利用磁盘存储数据,且按照主题、分区来分布式存放数据,持久化存储,提供海量数据存储能力。

    采用磁盘存储数据,连续进行读写保证性能,性能和磁盘的性能相关和数据量的大小无关。

三、安装配置

1、下载安装

    下载Kafka安装包,上传到Linux服务器。

    解压:

tar -zxvf kafka_2.9.2-0.8.1.1.tgz

    解压完成就相当于安装完毕,不过还要进行响应的配置。

2、配置

1.伪分布式

1>server.properties

    修改server.properties文件。

log.dirs=/tmp/kafka-logs

    此选项配置的是Kafka的数据存储位置,需要更改。

2>zookeeper.properties

    修改zookeeper.properties配置文件。此文件是Kafka内置的Zookeeper的配置文件。Kafka为了保证软件的独立性,自己内置了一个Zookeeper,所以使用为分布式的情况下,不用专门安装Zookeeper。

    如下项配置的是zookeeper的数据存储位置,默认在/tmp中,需要修改。

dataDir=/tmp/zookeeper

3>启动kafka

    启动zookeeper:

bin/zookeeper-server-start.sh config/zookeeper.properties &

启动kafka:

bin/kafka-server-start.sh config/server.properties

2.完全分布式

1>server.properties

    在config目录下,修改server.properties,在文件中修改如下参数:

broker.id=0 #当前server编号
port=9092 #使用的端口
log.dirs=/tmp/kafka-logs-1 #日志存储目录
zookeeper.connect=yun01:2181

    集群中broker.id要具有唯一性。

    日志存放目录需要更改为规划目录,不能使用默认的/tmp目录。

    Zookeeper需要配置Zookeeper集群中所有服务器的ip或主机名:端口。

2>启动

启动zookeeper

    在各个机器上执行如下启动命令:

zkServer.sh start

启动kafka

bin/kafka-server-start.sh ../config/server.properties &

    Kafka服务默认启动会占用控制台,所以可以后台运行。

3、测试

1.创建topic

    创建一个拥有3个副本的topic:

bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic topicname

2.查看

1>查看主题

bin/kafka-topics.sh --list --zookeeper localhost:2181

2>查看节点

    查看每个节点的信息:

bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic topicname

3.生产消息

    向topic发送消息:

bin/kafka-console-producer.sh --broker-list localhost:9092 --topic topicname

4.消费消息

    消费消息:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic topicname

5.实验:容错性

    制造宕机,查看Kafka的容错性。

kill -9 7564
bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic topicname
bin/kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic topicname

    启动kafka:

    启动zookeeper:

zkServer.sh start

启动kafka:

bin/kafka-server-start.sh config/server.properties

四、使用kafka

1、sell操作

1.创建topic

bin/kafka-topics.sh --create --zookeeper localhost:9092 --replication-factor 1 --partitions 1 --topic test

2.查看topic

bin/kafka-topics.sh --list --zookeeper localhost:2181

3.生产消息

使用命令行producer从文件中或者从标准输入中读取消息并发送到服务端:

bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

4.消费消息

启动命令行consumer读取消息并输出到标准输出:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning

2、JavaAPI操作

1.搭建开发环境

    创建java工程,导入kafka相关包,jar包存在于Kafka安装包的libs目录中,拷贝时注意,里面不只有jar包,还含有其他类型的文件,只拷贝jar包即可。

2.代码实现

1>消费者

/**
接收数据
*/
@Test
public void ConsumerReceive() throws Exception{
  Properties properties = new Properties();  
  properties.put("zookeeper.connect", "yun01:2181,yun02:2181,yun03:2181");//声明zk  
  // 必须要使用别的组名称, 如果生产者和消费者都在同一组,则不能访问同一组内的topic数据  
  properties.put("group.id", "group2xx");
  properties.put("auto.offset.reset", "smallest");
  // properties.put("zookeeper.session.timeout.ms", "400");
  // properties.put("zookeeper.sync.time.ms", "200");
  // properties.put("auto.commit.interval.ms", "1000");
  // properties.put("serializer.class", "kafka.serializer.StringEncoder");
  ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));  
  Map<String, Integer> topicCountMap = new HashMap<String, Integer>();  
  topicCountMap.put("my-replicated-topic", 1); // 一次从主题中获取一个数据  
  Map<String, List<KafkaStream<byte[], byte[]>>>  messageStreams = consumer.createMessageStreams(topicCountMap);  
  // 获取每次接收到的这个数据 
  KafkaStream<byte[], byte[]> stream = messageStreams.get("my-replicated-topic").get(0); 
  ConsumerIterator<byte[], byte[]> iterator =  stream.iterator();  
  while(iterator.hasNext()){
    System.out.println("receive:" + new String(iterator.next().message()));
  }
}

2>生产者

/**
发送数据
*/
@Test
public void ProducerSend(){
  Properties props = new Properties();
  props.put("serializer.class", "kafka.serializer.StringEncoder");
  props.put("metadata.broker.list", "192.168.242.101:9092");
  Producer<Integer, String> producer = new Producer<Integer, String>(new ProducerConfig(props ));
  producer.send(new KeyedMessage<Integer, String>("my-replicated-topic","message~xxx123asdf"));
  producer.close();
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Sorrower的专栏

内核必须懂(二): 文件系统初探

1223
来自专栏Python

cookie详解

今天看到一篇cookie的文章,写的特别详细,感谢 晚晴幽草轩 的分享,原文链接http://mp.weixin.qq.com/s/NXrH7R8y2Dqxs9...

4463
来自专栏LIN_ZONE

Linux各目录及每个目录的详细介绍(转载)

Linux目录和Windows目录有着很大的不同,Linux目录类似一个树,最顶层是其根目录,如下图:

1372
来自专栏黑白安全

8种DOS命令

  它是用来检查网络是否通畅或者网络连接速度的命令。作为一个生活在网络上的管理员或者黑客来说,ping命令是第一个必须掌握的DOS命令,它所利用的原理是这样的:...

2262
来自专栏软件测试经验与教训

看图说话:文件包含(File Inclusion)漏洞示例

作为测试人员,我们常常听到“安全测试”这个词,但鲜有人真正做过安全测试。从我们的职责“保障质量”角度来说,说是一种“失职”也不为过。那么安全测试是什么,究竟怎么...

2201
来自专栏wblearn

我的博客搭建之git的使用

前天我的github博客搭建好啦,并在本地写了一篇文章<a href="https://wblearn.github.io/2016/12/23/one/"ta...

741
来自专栏运维前线

蓝鲸社区版升级(v3.1.5-->v3.1.6)

# 蓝鲸社区版升级(v3.1.5–>v3.1.6) 升级步骤 下载最新的社区版安装包:http://bk.tencent.com/download/ 蓝鲸社区...

22410
来自专栏xingoo, 一个梦想做发明家的程序员

Redis从单机到集群,一步步教你环境部署以及使用

Redis作为缓存系统来说还是很有价值的,在大数据方向里,也是需要有缓存系统的。一般可以考虑tachyon或者redis,由于redis安装以及使用更简单,所...

5356
来自专栏difcareer的技术笔记

Android启动过程分析-从按下电源键到第一个用户进程[转载]正文

对Android最初的启动过程一直没有清晰的认识,看到一篇好文,转载一下: http://blog.jobbole.com/67931/ http://ww...

742
来自专栏云计算教程系列

如何在CentOS 6.5上使用Unicorn和Nginx部署Rails应用程序

在部署基于Rails的Web应用程序时,简单设计的应用程序服务器可以在几分钟内启动并运行。但是,如果您希望更好地控制服务器设置或想要尝试更灵活的新功能,那么使用...

1492

扫码关注云+社区

领取腾讯云代金券