前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python实现gabor滤波器提取纹理特征 提取指静脉纹理特征 指静脉切割代码

python实现gabor滤波器提取纹理特征 提取指静脉纹理特征 指静脉切割代码

作者头像
徐飞机
发布2018-05-15 17:21:52
2.7K0
发布2018-05-15 17:21:52
举报

参考博客:

https://blog.csdn.net/xue_wenyuan/article/details/51533953

https://blog.csdn.net/jinshengtao/article/details/17797641

傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后,

  图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具。

在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器。Gabor滤波器的频率和方向表达同人类视觉系统类似。研究发现,Gabor滤波器十分适合纹理表达和分离。在空间域中,一个二维Gabor滤波器是一个由正弦平面波调制的高斯核函数。

gabor核函数的表达式:

  复数表达式:

  可以拆解:实部:

       虚部:

其中:

参数介绍:

方向(θ):这个参数指定了Gabor函数并行条纹的方向,它的取值为0到360度

Figure 4: The Gabor Filter with the �� of 0°, 45°, 90°.
Figure 4: The Gabor Filter with the �� of 0°, 45°, 90°.

波长(λ):它的值以像素为单位指定,通常大于等于2.但不能大于输入图像尺寸的五分之一。

Figure 7: The Gabor Filter with the �� of 3, 8.
Figure 7: The Gabor Filter with the �� of 3, 8.

相位偏移(φ):它的取值范围为-180度到180度。其中,0he180度分别对应中心对称的center-on函数和center-off函数,而-90度和90度对应反对称函数。

Figure 5: The Gabor Filter with the �� of 17°, 180°.
Figure 5: The Gabor Filter with the �� of 17°, 180°.

长宽比(γ):空间纵横比,决定了Gabor函数形状(support,我翻译为形状)的椭圆率(ellipticity)。当γ= 1时,形状是圆的。当γ< 1时,形状随着平行条纹方向而拉长。通常该值为0.5

Figure 6: The Gabor Filter with the �� of 14, 45, 110.
Figure 6: The Gabor Filter with the �� of 14, 45, 110.

带宽(b):Gabor滤波器的半响应空间频率带宽b和σ/ λ的比率有关,其中σ表示Gabor函数的高斯因子的标准差,如下:

σ的值不能直接设置,它仅随着带宽b变化。带宽值必须是正实数,通常为1,此时,标准差和波长的关系为:σ= 0.56 λ。带宽越小,标准差越大,Gabor形状越大,可见平行兴奋和抑制区条纹数量越多。

好介绍完毕。

现在进入主题,我们提取纹理特征。

  提取纹理特征,还有增强纹理特征,很多时候我们都是要先提取ROI感兴趣区域来进行操作的。很多图片上的其他空间其实对我们没有什么太大的作用,还影响程序的运行速度。则我们只拿ROI区域进行纹理提取。

先看看原来的指静脉图片:

这图片区域很多,一般我们只需要中间那部分指静脉纹理最多的ROI区域。

代码:

代码语言:javascript
复制
#!/usr/bin/python
#coding:utf-8
import numpy as np
import os
import cv2

def pathFile(path):
    return os.getcwd() + '/' + path

def brightestColumn(img):
    w, h = img.shape
    r = range(h / 2, h - 1)
    c = range(0, w - 1)
    return img[c][:,r].sum(axis=0).argmax()

#构建GABOR滤波器
def build_filters():
    """ returns a list of kernels in several orientations
    """
    filters = []
    ksize = 31                                                                 #gaborl尺度 这里是一个
    for theta in np.arange(0, np.pi, np.pi / 4):                               #gaborl方向 0 45 90 135 角度尺度的不同会导致滤波后图像不同
        
        params = {'ksize':(ksize, ksize), 'sigma':3.3, 'theta':theta, 'lambd':18.3,    
                  'gamma':4.5, 'psi':0.89, 'ktype':cv2.CV_32F}
                                                                            #gamma越大核函数图像越小,条纹数不变,sigma越大 条纹和图像都越大
                                                                            #psi这里接近0度以白条纹为中心,180度时以黑条纹为中心
                                                                            #theta代表条纹旋转角度
                                                                            #lambd为波长 波长越大 条纹越大
        kern = cv2.getGaborKernel(**params)                                    #创建内核
        kern /= 1.5*kern.sum()
        filters.append((kern,params))
    return filters                                                          

#滤波过程
def process(img, filters):
    """ returns the img filtered by the filter list
    """
    accum = np.zeros_like(img)                                              #初始化img一样大小的矩阵
    for kern,params in filters:
        fimg = cv2.filter2D(img, cv2.CV_8UC3, kern)                         #2D滤波函数  kern为其滤波模板
        np.maximum(accum, fimg, accum)                                      #参数1与参数2逐位比较  取大者存入参数3  这里就是将纹理特征显化更加明显
    return accum

#获取感兴趣区域的top 和 bottom值 用于切割显示图像
def getRoiHCut2(img, p0):
    h, w = img.shape

    maxTop = np.argmax(img[0: h / 2, 0])                                    #在一定区域遍历选取指静脉边缘 具体高宽结合图像
    minTop = np.argmax(img[0: h / 2, w-1])
    if(maxTop < 65):
        maxBottom = np.argmax(img[(13 * h / 16): 40*h/48  , 0]) + 3 * h / 4
        minBottom = np.argmax(img[(13 * h / 16): 40*h/48, w-1]) + 3 * h / 4
    else:
        maxBottom = np.argmax(img[(3 * h / 4): h  , 0]) + 3 * h / 4
        minBottom = np.argmax(img[(3 * h / 4): h, w-1]) + 3 * h / 4
    maxTop = (2*maxTop + minTop) / 3
    maxBottom = (maxBottom + 2*minBottom) / 3

    return img[maxTop:maxBottom,:]

#获取感兴趣区域范围
def getRoi(img):
    height, width = img.shape
    heightDist = height / 4

    w = img.copy()
    w1 = w[heightDist:3 * heightDist,width / 4:]
    p0 = brightestColumn(w1) + heightDist + height / 2                      #将手指边缘的高度加上四分之三原始高度  
    pCol = w[:,p0:p0 + 1]

    pColInv = pCol[::-1]

    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))              #构建一个有限对比适应性直方图均衡化器  

    w1_2 = clahe.apply(w[:, (p0 /20):(p0 + p0 / 2)])                       #截取区域宽度大概是p0高度的一点五倍 apply是获取一个返回值 这里是为了方便参数的传递
    w2 = getRoiHCut2(w1_2, p0)

    res = cv2.resize(w2, (270, 150), interpolation=cv2.INTER_CUBIC)

    return clahe.apply(res)

def logImg(img):
    return img.astype(float) / 255                                          #将图像数据转为0-1存储

mDir=[]
imgs = []
dbDir = os.getcwd() + "/db100/"
people = os.listdir(dbDir)
people.sort()

for person in people:
    personDir = dbDir + person + "/"
    hands = os.listdir(personDir)

    for hand in hands:
        handDir = personDir + hand + "/"
        mDir += [handDir]
        mg = os.listdir(handDir)
        mg.sort()
        imgs = imgs + [handDir + s.split(".")[0] for s in mg if not s.split(".")[0] == "Thumbs"]

p0Imgs = [i.replace('db', 'gab_roi_db') for i in imgs]                         #p0Imgs是每个文件的路径,mDir是需要创建路径所有文件夹存放预处理后图片
mDir = [i.replace('db', 'gab_roi_db') for i in mDir]

#判断路径是否存在   不存在就创建路径
for path in mDir:
    if not os.path.exists(path):
        os.makedirs(path)

filters = build_filters()
for index, imgPath  in enumerate(imgs):
    img = cv2.imread(imgPath + ".bmp", 0)
    res0 = process(getRoi(img), filters)                                        #获取ROI进行直方图均衡化 切割后 在gabor滤波
    cv2.imwrite(p0Imgs[index] + ".png", res0)
    print index


cv2.waitKey(0)
cv2.destroyAllWindows()

好现在看看处理后的指静脉图片:

看起来还不错吧,预处理之后就可以 进行纹理特征提取放入文件进行模式匹配啊 进行指静脉识别啊。有兴趣的就期待在下之后的博客。

http://www.cnblogs.com/DOMLX/p/8989836.html 提取纹理特征

http://www.cnblogs.com/DOMLX/p/8672489.html 指静脉细化算法

http://www.cnblogs.com/DOMLX/p/8111507.html 指静脉切割过程

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-05-04 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
检测工具
域名服务检测工具(Detection Tools)提供了全面的智能化域名诊断,包括Whois、DNS生效等特性检测,同时提供SSL证书相关特性检测,保障您的域名和网站健康。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档