ConcurrentHashMap 原理解析(JDK1.8)

了解ConcurrentHashMap 实现原理,建议首先了解下HashMap实现原理。 HashMap 源码解析(JDK1.8)

为什么要用ConcurrentHashMap

HashMap线程不安全,而Hashtable是线程安全,但是它使用了synchronized进行方法同步,插入、读取数据都使用了synchronized,当插入数据的时候不能进行读取(相当于把整个Hashtable都锁住了,全表锁),当多线程并发的情况下,都要竞争同一把锁,导致效率极其低下。而在JDK1.5后为了改进Hashtable的痛点,ConcurrentHashMap应运而生。

ConcurrentHashMap为什么高效?

JDK1.5中的实现

ConcurrentHashMap使用的是分段锁技术,将ConcurrentHashMap将锁一段一段的存储,然后给每一段数据配一把锁(segment),当一个线程占用一把锁(segment)访问其中一段数据的时候,其他段的数据也能被其它的线程访问,默认分配16个segment。默认比Hashtable效率提高16倍。

ConcurrentHashMap的结构图如下(网友贡献的图,哈):

Paste_Image.png

JDK1.8中的实现

ConcurrentHashMap取消了segment分段锁,而采用CAS和synchronized来保证并发安全。数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。 synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。

JDK1.8的ConcurrentHashMap的结构图如下:

Paste_Image.png

TreeBin: 红黑二叉树节点 Node: 链表节点

ConcurrentHashMap 源码分析

ConcurrentHashMap 类结构参照HashMap,这里列出HashMap没有的几个属性。

/**
     * Table initialization and resizing control.  When negative, the
     * table is being initialized or resized: -1 for initialization,
     * else -(1 + the number of active resizing threads).  Otherwise,
     * when table is null, holds the initial table size to use upon
     * creation, or 0 for default. After initialization, holds the
     * next element count value upon which to resize the table.
     hash表初始化或扩容时的一个控制位标识量。
     负数代表正在进行初始化或扩容操作
     -1代表正在初始化
     -N 表示有N-1个线程正在进行扩容操作
     正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小
     */
    private transient volatile int sizeCtl; 
    // 以下两个是用来控制扩容的时候 单线程进入的变量
    /**
     * The number of bits used for generation stamp in sizeCtl.
     * Must be at least 6 for 32bit arrays.
     */
    private static int RESIZE_STAMP_BITS = 16;
    /**
     * The bit shift for recording size stamp in sizeCtl.
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    
    
    /*
     * Encodings for Node hash fields. See above for explanation.
     */
    static final int MOVED     = -1; // hash值是-1,表示这是一个forwardNode节点
    static final int TREEBIN   = -2; // hash值是-2  表示这时一个TreeBin节点

分析代码主要目的:分析是如果利用CAS和Synchronized进行高效的同步更新数据。 下面插入数据源码:

public V put(K key, V value) {
    return putVal(key, value, false);
}

    /** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    //ConcurrentHashMap 不允许插入null键,HashMap允许插入一个null键
    if (key == null || value == null) throw new NullPointerException();
    //计算key的hash值
    int hash = spread(key.hashCode());
    int binCount = 0;
    //for循环的作用:因为更新元素是使用CAS机制更新,需要不断的失败重试,直到成功为止。
    for (Node<K,V>[] tab = table;;) {
        // f:链表或红黑二叉树头结点,向链表中添加元素时,需要synchronized获取f的锁。
        Node<K,V> f; int n, i, fh;
        //判断Node[]数组是否初始化,没有则进行初始化操作
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        //通过hash定位Node[]数组的索引坐标,是否有Node节点,如果没有则使用CAS进行添加(链表的头结点),添加失败则进入下次循环。
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        //检查到内部正在移动元素(Node[] 数组扩容)
        else if ((fh = f.hash) == MOVED)
            //帮助它扩容
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            //锁住链表或红黑二叉树的头结点
            synchronized (f) {
                //判断f是否是链表的头结点
                if (tabAt(tab, i) == f) {
                    //如果fh>=0 是链表节点
                    if (fh >= 0) {
                        binCount = 1;
                        //遍历链表所有节点
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            //如果节点存在,则更新value
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            //不存在则在链表尾部添加新节点。
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    //TreeBin是红黑二叉树节点
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        //添加树节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                      value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            
            if (binCount != 0) {
                //如果链表长度已经达到临界值8 就需要把链表转换为树结构
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    //将当前ConcurrentHashMap的size数量+1
    addCount(1L, binCount);
    return null;
}
  1. 判断Node[]数组是否初始化,没有则进行初始化操作
  2. 通过hash定位Node[]数组的索引坐标,是否有Node节点,如果没有则使用CAS进行添加(链表的头结点),添加失败则进入下次循环。
  3. 检查到内部正在扩容,如果正在扩容,就帮助它一块扩容。
  4. 如果f!=null,则使用synchronized锁住f元素(链表/红黑二叉树的头元素) 4.1 如果是Node(链表结构)则执行链表的添加操作。 4.2 如果是TreeNode(树型结果)则执行树添加操作。
  5. 判断链表长度已经达到临界值8 就需要把链表转换为树结构。

总结:     JDK8中的实现也是锁分离的思想,它把锁分的比segment(JDK1.5)更细一些,只要hash不冲突,就不会出现并发获得锁的情况。它首先使用无锁操作CAS插入头结点,如果插入失败,说明已经有别的线程插入头结点了,再次循环进行操作。如果头结点已经存在,则通过synchronized获得头结点锁,进行后续的操作。性能比segment分段锁又再次提升。


本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏owent

AC自动机

整个程序的算法思想是看别人的ACM的blog看懂的,感觉确实和KMP很像。但是代码呢就比较工程化一点。顺便回忆了一把ACM的感觉。

9510
来自专栏noteless

【JAVA集合框架一 】java集合框架官方介绍 Collections Framework Overview 集合框架总览 翻译 javase8 集合官方文档中文版

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

8620
来自专栏高性能服务器开发

什么是B+Tree

B+Tree的定义 B+Tree是B树的变种,有着比B树更高的查询性能,来看下m阶B+Tree特征: 1、有m个子树的节点包含有m个元素(B-Tree中是m-1...

36180
来自专栏ml

cf(#div1 B. Dreamoon and Sets)(数论)

B. Dreamoon and Sets time limit per test 1 second memory limit per test 256 ...

32570
来自专栏xingoo, 一个梦想做发明家的程序员

程序猿的日常——HashMap的相关知识

背景知识 ? 哈希冲突 哈希是指通过某种方法把数据转变成特定的数值,数值根据mod对应到不同的单元上。比如在Java中,字符串就是通过每个字符的编码来计算、数字...

191100
来自专栏数据处理

proc-tabulate-report

35540
来自专栏企鹅号快讯

什么是B+Tree

推荐阅读 微服务: springboot系列教程学习 源码:Javaweb练手项目源码下载 调优:十五篇好文回顾 面试笔试:面试笔试整理系列 B+Tree的定义...

24460
来自专栏我是攻城师

理解Java8并发工具类ConcurrentHashMap的实现

前面的文章已经分析过List和Queue相关的接口与并发实现类,本篇我们来分析一下非常Java里面非常重要的一个数据结构HashMap。(注意Set类型在这里我...

28120
来自专栏bboysoul

1455: C语言实验题――数字串求和

描述:求s=a+aa+aaa+aaaa+aa…a的值,其中a是一个1~9的数字。例如2+22+222+2222+22222(此时共有5个数相加)。 输入:输入...

9120
来自专栏Python小屋

使用Python编写程序求解数独游戏答案

问题描述:数独盘面是个九宫,每一宫又分为九个小格。在这八十一格中给出一定的已知数字和解题条件,利用逻辑和推理,在其他的空格上填入1-9的数字。使1-9每个数字在...

29530

扫码关注云+社区

领取腾讯云代金券