数据路线|构建供应链金融的4大步骤

大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。

作者|卞峥

校对|Shawn

何为供应链金融?

百度释义: 银行围绕核心企业,管理上下游中小企业的资金流和物流,并把单个企业的不可控风险转变为供应链企业整体的可控风险,通过立体获取各类信息,将风险控制在最低的金融服务。

也就是供应链金融的起源,是由于传统银行为拓宽放贷渠道,获得优质的资产,企图通过核心优质企业的上下游客户资源,将单个企业的贷款风险由供应链上整个企业群的信息来预警,并加以规避。即将原先单体的信用体系改变为企业链式的信用体系。

因此要保证供应链金融的安全性,终极方法就是通过供应链将客户公司的三流:信息流、资金流、物流囊括入分析范畴。通过真实交易信息演算客户公司的实际财务信息。因此,数据是供应链金融的命脉。

概括来说,要掌握该命脉,可以分为四步骤。

第一步:核心数据来源

无论是业务还是数据都需要有渠道来源,对于供应链金融而言,就必须选择一个核心企业,通过这类企业来获取核心的交易数据。这种企业有三大类四大标准。

一般的产业链可以寻找这样的三大类企业:

第一、具有绝对市场地位的企业

由于现代工业及全球信息化的快速发展,现代企业已不再如传统仅仅进行原材料采购或集中生成,而是采用整体的供应链采购以及生产外包的模式,涉及的供应链以及生产活动可能会遍布全国乃至全球。最为典型的案例则为苹果公司,苹果手机作为全球最畅销的手机产品,在生产环节,整个手机大约500多个零部件被全球200多家供应商所外包,并也由供应商进行组装;在销售环节,除了自有销售渠道外,代理商遍布全球各类渠道,有线下的传统销售终端,也有新式的电子商务平台。

第二、渠道类交易平台

所有产品的销售都离不开渠道,由于现今社会的网络化信息化程度不断增高,销售渠道也快速的从线下迁移至线上。

无论线上还是线下都存在大量的上下游客户,对于B2C型的交易平台可掌握上游供应商,对于B2B型的则更能深一步获取下游采购商的交易信息。

例如我们非常熟悉的京东,作为B2C平台,京东面对大量的上游供应商,供应商的账期在45天左右,为解决上游供应商资金流动性问题,也增加供应商对京东平台的粘性,京东金融提出了供应链金融的解决方案“京保贝”,根据供应商的应收账款给予融资。由于京东不但了解供应商的货物销售交易,更掌握了实际的销售回款交易,因此该产品对京东几乎是零风险,名利双收。

第三、物流仓储平台

该类平台很早以前就是银行重点开发的核心企业。最早非常常见的供应链金融模式,即为仓单质押,这类业务特别需要物流仓储配合监控。

另外,企业的物流一般都需要第三方物流公司配合。因此要精准掌握企业的物流状况,必然要获取第三方物流信息,所以物流仓储平台成为了供应链金融的重要一环。

根据上述的简单介绍,这三大类企业一般都符合以下四个标准:

1、在行业中属于龙头企业、风向标;

2、具有大量上下游企业;

3、具有稳定或有规律采购以及销售流水;

4、具有较高程度的系统化信息化。

也就是这些原因,一旦介入这类企业的供应链金融管理,提供各类金融产品例如信用证、应收账款以及票据等业务,可快速掌握上下游企业交易,掌握企业的信息流、资金流以及物流数据。

第二步:确定数据范围

企业信息数据复杂而纷乱,如何在那么多数据中找到自己所需的数据,决定了最终成果的可信度。

一般而言,企业内部有三类数据,分别为:内部管理数据、交易数据、财务数据。内部管理数据一般为企业内部的行政管理数据,例如OA系统内产生的内部流程数据。交易数据,则为企业营运过程中发生的一系列买卖交易,这里面涉及到在买卖过程中的信息流、资金流、物流。财务数据,一般是指传统财务的三大报表,资产负债表、利润表以及现金流量表。

在银行传统业务中,主要是通过财务数据对风险进行评估。但由于财务数据属于结果性的数据,无法实时或及时的对企业运营状况进行监控或预警,因此在供应链金融的模型中财务数据仅仅是一个辅助数据。更主要的则是交易数据,所有与买卖交易相关的数据都要进入监控分析范畴,从传统的进销存、客户信息、资金收支信息,乃至到系统的过账方法都将是至关重要的分析数据。以交易数据为主,以财务数据为辅;用交易数据监控过程,财务数据辅助验证结果以及过程的真实性。

第三步:构架规则引擎

首先,长久以来,金融数据都以固定主题的静态指标进行分析。无论是teradata的十大主题( 当事人、产品、协议、事件、资产、财务、机构、地域、营销、渠道 ),还是风险管理中按资金风险、市场风险、信用风险、操作风险等进行分类主题,主题下的指标都需要分析人员根据统计制度手工添加。

其次,目前银行金融体系的数据分析更多的是分析自有资产,而不是客户资产或交易。固然通过对自有资产或历史还款指标进行分析能够发现已发生的风险情况。然而实际上,风险更应该在发生之前就被识别与预警。

所以在现今互联网的时代,这样的分析已不再适应时代的发展。数据分析逐渐在使用动态的规则引擎来替代原有的静态指标,使用客户交易或行为数据来替代以往的财务数据。通过“进行时”的数据(例如交易行为)来判断“将来时”的数据(例如客户未来的经营状况),而不是通过“过去时”的数据(例如客户的已逾期的贷款或财务数据)去进行判断。

这种规则引擎模式的分析在支付宝的支付模型中有非常好的体现,例如支付宝在其风险模型中采用了六大维度( 账户、设备、位置、行为、关系、偏好 ),在模型中采用了1万多条规则或策略,来判断支付行为是否有危险。

第四步:优化风险及信用体系

传统供应链金融的风险及信用体系是基于传统银行的风险管理及信用体系。但在新金融的模式下,传统体系显得笨重及片面。例如银行的信用体系严重依赖央行征信以及一些外部的风险评级,这类体系由于自身过于庞大以及局限性,无法及时调整判断标准,更无法覆盖市场新业务或新兴企业。

因此通过互联网金融来建设供应链金融的风险体系以及信用体系则成了最终的数据分析目标。

首先,建设完整的风险管理体系。这里的风险管理并不仅仅是现在互联网金融中经常提到的风险控制,而是包含了风险识别、风险度量、风险控制三部分。

之前构建规则引擎仅仅是手段,目标是通过机器学习的手段不断补充规则或策略,最终通过这些规则来制定风险管理体系,在整个体系中应用规则来识别风险、应用规则的风险权重来度量风险、最终通过规则对应的规避方法来控制风险。

其次,在成熟有效的风险管理体系下形成信用体系。目前国内不仅仅欠缺个人信用体系,更缺失企业信用体系。绝大部分小微企业无法依靠现有的人行信用体系获取贷款授信。而供应链金融依靠供应链数据构造出风险管理体系,并基于此为这些小微企业设计出一套信用体系,一套基于核心企业的链式信用体系。

最终,这整套风险管理体系以及信用体系是否成功,将决定了供应链金融业务发展所能达到的高度。

注:本文为作者个人观点,欢迎讨论。

大数据金融专栏简介

大数据文摘“金融与商业专栏”视角集中在金融及商业决策分析相关的大数据分析文摘,内容涵盖金融、信贷、风控、投资、理财、商业等领域。鼓励独家首发与观点原创,行业前沿理论分享,国外优秀文章翻译以及行业领袖采访演讲编译,力争刊出更多金融和商业领域相关精品文章。欢迎各位同行及对数据分析感兴趣的朋友加入,共同分享交流。

大数据金融专栏译者简介

有意联系栏目组成员的朋友,请给“大数据文摘”后台留言,附自我介绍及微信ID,谢谢。

卞 峥

现供职于国内某大宗电商,之前曾在中资、外资银行工作多年,主要专注于产品设计及项目管理等工作。熟悉银行金融业务,具有经营分析类、数据类以及监管类项目的丰富实施经验。希望通过该《大数据文摘》这个平台,与更多的数据爱好者以及专家进行交流学习。

仲 杉

Shawn,资深银行战略分析师,商业管理与数据分析硕士,现就职于加拿大顶尖商业银行信贷战略决策部门。多年金融银行业从业经验,曾先后任职于银行商业信贷部,内审与金融欺诈调研部,投行金融衍生品交易与项目管理部,信用风险管控及商业决策部,与BCG,德勤、毕马威等多家咨询公司开展过项目管理合作。现为国际统筹研究与管理科学协会会员,加中金融协会会员,加拿大贝街金融论坛成员,并在加拿大女皇大学商学院兼职助教职务。现任《大数据文摘--金融与商业专栏》主编,欢迎各位同行及对数据分析感兴趣的朋友共同分享,交流学习。

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2015-06-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人称T客

未来软件看SaaS SaaS趋势看Salesforce

都说今年是SaaS元年,但SaaS领域的发展还要看Salesforce这些领头羊,他的走向决定了SaaS市场未来的格局。 从财报上来看,Salesforce迎...

3946
来自专栏AI科技大本营的专栏

专访天数智芯李云鹏:两年时间一定要做出自主可控、国际一流的AI芯片

近日,美国商务部长罗斯表示,美国政府与中兴通讯已经达成协议,中兴将在缴纳14亿美元及30天内更换董事会和管理层后恢复业务。此消息一出,中国“缺芯”之痛再次成为人...

1532
来自专栏腾讯研究院的专栏

中国互联网20年治乱得失都在这里,上游之治影响行业兴衰

张钦坤    腾讯研究院副秘书长,法学博士   不经意间,中国的互联网产业突然成为全球的关注热点。美国的《纽约时报》、《连线》杂志,英国的《经济学人》、《金融时...

2397
来自专栏数据猿

金融魔方创始人兼CEO刘嘉:金融SaaS为中小企业赋能的机遇与挑战

2017年10月25日,由数据猿联合《清华金融评论》共同主办的“2017金融科技价值峰会——数据驱动金融商业裂变”在北京隆重召开。本文是金融魔方创始人兼CEO ...

3888
来自专栏IT技术大会

“2018中国大数据应用大会”邀您到成都耍一耍!

网址:https://www.huodongjia.com/event-1100998594.html

2026
来自专栏点滴科技资讯

大企业应该向成功的独角兽企业学什么?

独角兽俱乐部是创业企业的“英超联赛”。独角兽企业是那些快速发展的小型企业,估值至少为10亿美元。这些独角兽企业基本上都是由大学辍学的技术天才创立的,他们想出了...

3638
来自专栏镁客网

5G手机就要来了,要不要换手机? | 拔刺

说个亲身体验“手机报废在4G来的黎明前夜”的实例,来看看新网络来临,该不该换手机。

1287
来自专栏人称T客

全渠道零售时代的“道·术·器”

欣欣向荣的5月,海鼎分别在杭州和深圳举办了主题为“全渠道 新零售 启未来”的2014全渠道战略研讨会,定邀部分零售企业负责人、行业协会、媒体朋友前来,共同探讨新...

4278
来自专栏IT派

工业4.0的大众样本:3万台机器人,50秒造一辆车

一个小机器人“哼”着清脆的轻音乐从现场的工人边上“轻巧”地擦身而过,顺利地把几样汽车配件运送到了下一个工位。这并非著名科幻小说家艾萨克·阿西莫夫(Isaac A...

1153
来自专栏腾讯研究院的专栏

你所理解的分享经济,是否是我所感知的分享经济?

引爆市场的分享经济正逐步变成包罗万象的经济形态,对其界定百家争鸣,尚无定论 孙怡  腾讯研究院高级研究员 任帅涛 腾讯研究院助理研究员 随着Ube...

2944

扫码关注云+社区

领取腾讯云代金券